MAPNet (Mobile Atmospheric Profiling Network) General Description

K. Knupp, L. Carey, R. Wade, P. Pangle, and D. Phillips Univ. of Alabama in Huntsville

FAIR FACILITIES AND INSTRUMENTS - WORKSHOP 1 - SEPTEMBER 13-15, 2023

Facilities for Atmospheric Research and Education (FARE, National Science Foundation)

<u>https://www.nsf.gov/geo/ags/programs/fare/</u>

Lower Atmosphere Observing Facilities

- UW King Air
- NSF/NCAR C-130
- NSF/NCAR GV
- NCAR airborne instrumentation
- NCAR Integrated Sounding System
- NCAR Integrated Surface Flux System
- NCAR S-Pol dual-pol radar

Community Instruments and Facilities (CIF)

Radars

- UIUC FARM
- OU RaxPol Mobile Doppler radar
- Stony Brook mm-wave radar facility
- CSU SEA-POL radar

Remote Sensing Suites

- SSEC/UW SPARC
- UAH MAPNet

Laboratory facilities

- Clemson Soot Photometer
- Michigan Tech PI Chamber
- NCSU Nucleation Cold Stage
- Univ Utah Storm Peak Lab

Mobile Integrated Profiling System (MIPS)

Pre-PERiLS, 11 Dec. 2021

8-m Surface Met Tower (Sonic wind & T)

Mobile Doppler Lidar & Sounding

system (MoDLS)

4-m Surface

Met (Gill GMX-

600)

MoDLS

6 kW Generator

Halo Photonics Doppler Wind Lidar **Radiometrics 35 Channel Microwave Profiling Radiometer**

Helium Tank

MAPNet Platforms

Rapidly Deployable Atmospheric Profiling System (RaDAPS)

Radiometerics 915 MHz Wind Profiler

Metek Micro Rain Radar

Vaisala Lidar Ceilometer

6- m Vaisala

WXT 520

Ida landfall 29 Aug 2021

> **Radiometrics 35 Channel Microwave Profiling Radiometer**

RM Young Wind Mon

30 Amp Diesel Generator

nsstc.uah.edu/mapnet/

Mobile Alabama X-band radar (MAX)

Vaisala WXT-510 Weather Transmitter

https:/

MAXN

Baron Radar Cabinet 8ft Diameter Antenna

10 kW Generator PERiLS IOP4, 13 Apr 2022

Instruments	MIPS	RaDAPS
for	 915 MHz Radar Wind Profiler 	• 915 MHz Radar Wind Profiler
	 Doppler sodar (option) 	 Doppler sodar (option)
Profiling of:	 X-band Profiling Radar 	 Micro Rain Radar (Metek)
Wind	 Microwave Radiometer (35 channel) 	Microwave Radiometer (35 channel)
• T/RH	Vaisala CL51 ceilometer	Vaisala CL51 ceilometer
• Precip.	 iMet sounding system 	 iMet sounding system
Aerosols	 Surface: T/RH (2 m), p, solar radiation, wind 	• Surface: T/RH (2 m), p, solar radiation, wind
Cloud	(10 m)	(4 m)
	Parsivel disdrometer	Parsivel disdrometer
<u>In situ</u>	MoDLS	MAX
<u>In situ</u> Radiation	 MoDLS Halo scanning Doppler lidar (1.5 μm) 	MAXScanning X-band dual polarization radar
<u>In situ</u> Radiation E field	 MoDLS Halo scanning Doppler lidar (1.5 μm) Microwave Radiometer (35 channel) 	 MAX Scanning X-band dual polarization radar Windsond sounding system (option)
<u>In situ</u> Radiation E field Photography	 MoDLS Halo scanning Doppler lidar (1.5 μm) Microwave Radiometer (35 channel) CHM 15k ceilometer 	 MAX Scanning X-band dual polarization radar Windsond sounding system (option) Surface: T/RH, p (3 m), solar radiation, wind
<u>In situ</u> Radiation E field Photography DSD	 MoDLS Halo scanning Doppler lidar (1.5 μm) Microwave Radiometer (35 channel) CHM 15k ceilometer Windsond or iMet sounding system 	 MAX Scanning X-band dual polarization radar Windsond sounding system (option) Surface: T/RH, p (3 m), solar radiation, wind (10 m)
<u>In situ</u> Radiation E field Photography DSD	 MoDLS Halo scanning Doppler lidar (1.5 μm) Microwave Radiometer (35 channel) CHM 15k ceilometer Windsond or iMet sounding system Surface: T/RH (2 m), p, solar radiation, IR 	 MAX Scanning X-band dual polarization radar Windsond sounding system (option) Surface: T/RH, p (3 m), solar radiation, wind (10 m)
<u>In situ</u> Radiation E field Photography DSD	 MoDLS Halo scanning Doppler lidar (1.5 μm) Microwave Radiometer (35 channel) CHM 15k ceilometer Windsond or iMet sounding system Surface: T/RH (2 m), p, solar radiation, IR radiometer, wind (7 m) 	 MAX Scanning X-band dual polarization radar Windsond sounding system (option) Surface: T/RH, p (3 m), solar radiation, wind (10 m) Valuable for providing the context of
<u>In situ</u> Radiation E field Photography DSD	 MoDLS Halo scanning Doppler lidar (1.5 μm) Microwave Radiometer (35 channel) CHM 15k ceilometer Windsond or iMet sounding system Surface: T/RH (2 m), p, solar radiation, IR radiometer, wind (7 m) Electric field meter (CS110) 	 MAX Scanning X-band dual polarization radar Windsond sounding system (option) Surface: T/RH, p (3 m), solar radiation, wind (10 m) Valuable for providing the context of profiling measurements.
<u>In situ</u> Radiation E field Photography DSD	 MoDLS Halo scanning Doppler lidar (1.5 μm) Microwave Radiometer (35 channel) CHM 15k ceilometer Windsond or iMet sounding system Surface: T/RH (2 m), p, solar radiation, IR radiometer, wind (7 m) Electric field meter (CS110) Sonic anemometer (CSAT3, 7 m) 	 MAX Scanning X-band dual polarization radar Windsond sounding system (option) Surface: T/RH, p (3 m), solar radiation, wind (10 m) Valuable for providing the context of profiling measurements.

4

Supporting infrastructure Relevant activities

- MAPNet maintenance
- Research
- Education and Outreach

SWIRLL infrastructure

- 5 high-bay spaces
- Operations Center (outreach)
- Classroom
- Conference Room
- Laboratories
- Office space (staff + students)
- Open lobbies on 1st and 2nd levels (outreach)
- Roof-top platforms
- Berm 70 m to the south

*Severe Weather Institute, Radar and Lightning Laboratories

Research capabilities

- Boundary Layer processes
- Precipitation processes
- Severe storms
- Cloud structure and evolution
- Mesoscale meteorology
- Landfalling tropical systems
- Air Quality studies
- Entomology and Ornithology

XPR reflectivity insect layer & point targets

16

4

2

18

Time (UTC

20

22

2

Emphasis in field campaigns, 2000-present

Year of formation MIPS – 1998 MAX – 2006 MoDLS – 2015 RaDAPS - 2017

Education and Outreach

- Various educational levels
 - K-12
 - Undergraduate, including REU activities
 - Graduate classes: Ground-Based Remote Sensing, Boundary Layer Meteorology – will develop modules that utilize MAPNet
- Weather Fests
- Other science and technology activities (e.g., Earth Day)
- E&O conducted both at SWIRLL and remotely at schools
- UAH undergraduate student group: *Profile Sounding Team for Operational and Research Meteorology* (UPSTORM)

2022 REU activity utilizing the MAPNet resources Lake breeze study 30 km SW of UAH

REU: Remote Sensing of Land-Atmosphere Systems

Recent MAPNet activities

- PERiLS field campaign (2022, 2023)
- Interaction with potential CIF/ MAPNet users - field campaign planning (Arizona 2025, Utah 2024-25
- Demonstration research deployments
 - Solar eclipse 2017
 - Deployment for Hurricane Laura and Ida landfalls

Leoma

- Dauphin Island Ozone experiment
- Pre-PERILS (2021-2022)
- Utilization in UAH courses
 - Ground-Based Remote Sensing, Spring 2022, 2024
 - Boundary Layer Meteorology, Spring 2021
- REU: Remote Sensing of Land-Atmosphere Systems project (2022)

PERiLS IOP 2 (2023) example

- Four scanning radars
- Three 915 MHz wind profilers
- Three Doppler lidars
- 12 sounding sites (magenta symbols are balloon soundings only, plus balloon soundings at the RWP and lidar profiler sites, and at the COW & DOW7 radar sites.
- StickNet (16 stations)
- Mobile LMA

MIPS measurements during PERiLS IOP3 (01-19 Z, 5 April 2022)

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

Future plans and opportunities

MAPNet involvement in long-term field measurement activities over NW Alabama, starting in early 2024. This will be a collaborative effort with the DOE AMF3 program, and will provide inclusive measurements over a very well instrumented mesoscale domain. The S5 and S6 supplemental site locations are tentative.

DOE AMF3 activity over N AL

Addition of MAPNet platforms will form a very comprehensive observational network.

This can serve as another paradigm for use of MAPNet resources by interested investigators.

Summary

- The MAPNet is a requestable facility for use in research and education projects
- Strengths: boundary layer processes, precipitation processes
- Mobility provides flexibility in experimental design
- Each profiling platform will offer some level of configurability
- We will strive to continuously upgrade the MAPNet capabilities

The request process is documented at the following we sites:

- MAPNet: <u>https://www.nsstc.uah.edu/mapnet/</u>
- FARE: <u>https://www.nsf.gov/geo/ags/programs/fare/</u>

Current instrumentation and facilities available for request under the Facility and Instrumentation Request Process (FIRP) Solicitation:

https://beta.nsf.gov/funding/opportunities/facility-and-instrumentation-request-process-firp

MAPNet is supported by the National Science Foundation, Grant AGS-2113247

