Tephra-EPMA Use Case

Stephen C. Kuehn

EPMA and Tephra Lab Physical and Environmental Sciences Concord University

Wednesday, July 26, 2023

FAIR Facilities and Instruments workshop, Boulder, Colorado

Personal Background and Interests in FAIR and Open Data

• Faculty at small PUI

- Teaching, mostly
- But lots of other things too
- EPMA lab manager
 - Instruments, people, projects, samples, data
 - Method and reference material development
 - Collaborative resource for other people's work
- Research in tephra and applications
 - Integrates both pyroclastic deposits at source volcanoes and far-reaching volcanic ash deposits
 - Eruption history, physical volcanology, tephrochronology, and applications to paleolakes, paleosoismology, etc.

- Work on FAIR data standards and recommended practices with the tephra community for about 10 years (+ NSF EarthCube community as well)
- Led to community recommendations / standards
 - Wallace et al., Community established best practice recommendations for tephra studies—from collection through analysis, Scientific Data 9 (2022), <u>https://dx.doi.org/10.1038/s41597-022-01515-y</u>
 - Abbott et al., Community Established Best Practice Recommendations for Tephra Studies-from Collection through Analysis, Zenodo (2022), <u>https://dx.doi.org/10.5281/zenodo.3866266</u>
- Collaboration with StraboSpot, SESAR, EarthChem, Sparrow, and Throughput
 - On initial implementations e.g. field app, community portal, metadata templates
 - Key components for a future data ecosystem spanning the field, lab, and data repository

Best Practices

Contact us

Community portal

Home / Communities / Tephra

RECENTLY PUBLISHED DATASETS

Stinchcomb,G., Quade,J., Levin,N., Iverson,N., Dunbar,N., McIntosh,W., Arnold,L., Demuro,M., Duval,M., Grun,R., Zhao,J., White,M., Hynek,S., Brown,F., Rogers,M., Semaw,S. 2023. Fluvial response to Quaternary hydroclimate in eastern Africa: Evidence from Gona, Afar, Ethiopia DOI

Kuehn,S., White,J., Goebel,T. 2022. Nataeł Na' Tephra Dataset DOI

Community-based Recommendations on Collection, Analysis and Correlation of Tephra Data

Method Templates

IAVCEI Commission on Tephrochronology

SUBMIT TEPHRA DATA TO ECL

Submission Workflow

SEARCH TEPHRA DATA IN ECL

Data Templates

Sample Templates

Tephra is a unique volcanic product that plays an unparalleled role in understanding past eruptions, longterm behavior of volcanoes, and the effects of volcanism on climate and the environment. Tephra deposits provide spatially widespread, extremely high-resolution time-stratigraphic markers across a range of

SESAR medatadata template built on community standards

This works and fills an important gap, but remains cumbersome to complete – More digital from birth metadata and automation could help

Partial support in database, but can archive complete record in file repository

• • • A Home Inse	AutoSave off 6	다 🖹 🗗 🎾	v C 📑 🕏 … 🖣 formulas Data Re	SESAR_Tephra	a_Submission_Ter Automate Dev	nplate_Summer reloper XLST	r Lake Pliocene2.xls	a - Compatibility	v Mode ۲	
G4 🗘	$\times \checkmark f_x$			M	etadata fielo	ls in colun	nns			
A	В	C	D					l.		
Category	*station ID or name of sampling station	*stratum or stratigraphic interval ID	*sample ID	parent IGSN (Core if from a core, Site if a grab sample)	sample IGSN	other sample ID	sample labelling convention	puŋ		
Tephra Best Practice: Explanation/Definition/Exa mple	must use the same station ID from the "Station (Site)" tab	give the name of the core that the sample was collected	nust use the same stratum or stratigraphic inter ID from the "Stratum or Stratigraphic Interval" tal Community	val must be unique. can be helpful to include station ID in sample ID, e.g. 09KWRD-1 (year, collector initial, volcano or location, sample 1)	list the IGSN number for the site or core that the sample was collected from	give International Geo Sample Number (IGSN) if applicable (strongly encouraged to register all samples in the System for Earth Sample Registration	include other sample ID's assigned to this sample (e.g. lab-assigned ID's)	explain how a sample id is generated (year, initials, volcano name, area name etc.), IGSN (international sample numbering)	why are you sa correlation etc	
SESAR: Explanation (Example)	ex	planation	tows (Coconino Sandstone; Fig Tree Formation)	 Sample Name: Collector's sample name. Mandatory. (TR- w POW) 		IGSN: Leave blank if you want SESAR to assign the IGSN (IEMEG0001)	Other name(s): Other name(s) used for the sample. (TRPOW; T-PROW)		Purpose: Free collection pur (Stratigraphic i Geochronolog	
Metadata Entry Entry Example	Summer Lake 2006 Trench 1		Composite Section Stratum 9	Metadata	example rov	N	CU1071	site code (FF) and sequential number; a,b or -1, -2 indicate subsamples of a tephra layer or sample splits	tephrochronol	
Input your Metadata Here	Summer Lake 2006 Trench 1		Composite Section Stratum 9	FF1			CU1071	site code (FF) and sequential number; a,b or -1, -2 indicate subsamples of a tephra layer or sample splits	t	
Summer Lake 2006 Trench 1		Composite Section Stratum 11	FF2			CU1072	site code (FF) and sequential number; a,b or -1, -2 indicate subsamples of a tephra layer or sample splits	t		
	Summer Lake 2006 Trench 1		Composite Section Stratum 23	FF3			CU1073	site code (FF) and sequential number; a,b or -1, -2 indicate subsamples of a tephra layer or sample splits	t	
Summer Lake 2006 Trench 1		Composite Section Stratum 24	FF4			CU1074	site code (FF) and sequential number; a,b or -1, -2 indicate subsamples of a tephra layer or sample splits	t		
Put	your meta	data here,	as xosite Section Stratum 28	FF5a			CU1075a	site code (FF) and sequential number; a,b or -1, -2 indicate subsamples of a tephra layer or sample splits	t	
r	Summer Lake 2003 Trench 1		posite Section Stratum 28	FF5b			CU1075b	site code (FF) and sequential number; a,b or -1, -2 indicate subsamples of a tephra layer or sample splits	t	
			Composite Section Stratum 29	FF6			CU1076	site code (FF) and sequential number; a,b or -1, -2 indicate subsamples of a tephna layer or sample splits	t	
Summor I das 1998 Treach 3		Trench 3 cond with sumico	CC7 4			C1 H077 4	site code (FF) and sequential number;			
< ► Intr	oduction (a) Pr	roject (b) St	tation (Site) (c) Suba	aerial Station	(d) Core (e) St	ratum or Strat. Inte	erval (f) Sample	(g) Core Drive	Section	
	Tal differ	os for intr ent metac	oduction and lata framework	s						

Analytical Method Descriptors

Re-usable with DOI so only needs to be done once (e.g. by the method expert)

EPMA and SEM-EDS done

Working on LA-ICP-MS, others

Add PIDs for labs and instruments?

ome li	nsert Draw	Page Layout	Formulas Da	ata Review View Auto	omate Develo	oper XLSTAT	♀ Tell me				mments 🖻 S
2 4	$\times \checkmark f_x$										
A	8	С	D	E	P.	G	н		J	к	L M
	Primary Ana	alytical Meta	data	BOLD, CAPITAL headings indicate MANDATORY fields	This spreadsheet is designe EDS analytical method. Use	d for entry of metadata related a separate spreadsheet for ea	to a single EPMA or SEM- ich additional method.				
	IDENTIFICATION										ANALYTICAL PRO
Metadata Field Method DOI METHOD N		METHOD NAME	Method start date	TECHNIQUE	INSTRUMENT	LABORATORY	Laboratory ID	Additional method references	Funding	SOFTWARE	
	Metadata Field Description	DOI or unique identifier for this method (generated after submission)	Short descriptive name for the method, with version number	First date when method was used in YYYY/MM/DD format (format as plain text)	Select either EPMA or SEM- EDS	Instrument manufacturer and model - e.g. CAMECA SX50	Name of laboratory or institution - e.g. Woods Hole Oceanographic Institute	add ROR if available (https://ror.org/)	DOI or URL for any other document that describes this method in further detail; Ideally, this document will include an evaluation of accuracy and precision; Ideally It will also be open access (e.o. 2 apondo)	Grants and other funding that supported instrument purchase, major upgrades, key supporting equipment, and personnel; Include grant IDs where applicable	analytical and autor software, including v
Enter only metadata on this line			CU routine tephra glass version 6	2019-03-26	ЕРМА	ARL SEMQ	Concord University, Athens, West Virginia, USA		This method is a derivative of method 1 described in this 2018 conference poster: https://doi.org/10.5281/zenodo. 4571693	2018 West Virginia Higher Education Policy Commission Division of Science and Research, grant number HEPC.dsr.19.10; 2015 West Virginia Higher Education Policy Commission Division of Science and Research, grant	Probe for EPMA 9.6 Bruker Esprit 1.9.4

•••	AutoSave	OFF 6 8	P 5	· C 💼	<i>≣</i>		Concord EPMA_Glass_METHOD_6-0 (final) ~													ç
Home	Insert Dra	aw Page Lay	out Fo	rmulas	Review	View	View Automate Developer XLSTAT 🖓 Tell me								P (Comments 🖻 Share				
A1	* × ~	fx																		
A	В	C D	E	F	G	н	Í.	J	К	L	м	N	0	р	Q	R	S	т	U	Ī
1	Acquisition and Post-Processing Metadata																			
2 3 4		OPERATION												CALIBRATION			_		PROCEDURAL BLANK	Ē
6	PARAMETER	BEAM CURRENT	Spectrometer	Sequence	WDS Diffractin Crystal	9 Detector Type	X-ray Line	Peak Acquisition Time (seconds)	n Background Acquisition Method	WDS Background Acquisition Time	WDS PHA Setting	EDS Dead Time		Primary Standard Name	Primary Standard ID	Interfering Elements	Interference Correction Standards		Blank Method	
7	measured element or oxide - e.g. SiO2, Ba	beam current measured in nA	type and number e.g. WDS 1, WDS 2, EDS	- order of analysis on spectrometer e.g. 1, 2, 3	WDS diffracting crystal - e.g. PET, LIF, TAP, RAP, etc.	e.g. xenon, P-10, P-10 low pressure, P-10 high pressure; SDD silicon drift detector, Si(Li) detector	e.g Ka, La	report seconds, numerical value only	e.g. two backgrounds, high side only, multipoint, MAN (mean atomic number model); Separate background method is not applicable for EDS	total for background(s) - e.g 30 sec (not applicable if using MAN)	e.g. integral, differential	percent dead time reported by the EDS spectrometer		reference material used for element standardization (calibration)	IGSN, GeoReM ID, Smithsonian number, or similar	list any elements for which a spectral interference correction was used (e.g. Ba la is interfered by Ti ka)	reference materials used to calibrate the interference corrections		e.g. single sample, multi- sample weighted mean	re1 tr
Use one row f each measure element	or ed SIO2	10	EDS	1		SDD	Ка	8				10-12%		BHVO-2g glass, NKT- 1g glass, or Lipari obsidian ID3506						
,	TIO2	10	WDS 6	1	PET	P-10	Ка	180	MAN		integral			NKT-1g glass		Ва	Sanbornite		offline, multi-standard, weighted mean blank correction computed and applied in Excel	u
	EPMA-SEM F	Part 1 EPM	A-SEM Par	t 2 +			1		1	1	1	-		BHUO2a or NKT-1a						

Micro-Analytical Data and Metadata Template at EarthChem

Report both sample data and reference material (secondary standard) data together linked by analytical session

Supports many in-situ point analyses of the same target, mean, stdev, grain ID, etc.

Supports Smithsonian GVP volcano and eruption IDs

PID links to method DOIs, IGSNs, ORCIDs

lome Insert	Draw Pa	ige Layou	t Form	ulas Data	Review	View	Auto	mate	Develop	er XI	STAT	7 Tell	me							
/4 🌲 🗙	$\checkmark f_x$																			
A	В	0	P Q	R	S	Т	U	V	W	×	Y Z	AA	AB	AC	AD	AE	AF	AG	AH	A
DATA TABLE NAME	Kuehn-White-Go										For glas	s: REPO	ORT NOR	MALIZED	ANALY	TICAL DA	TA (tota	Is to 100	%) AND	THE
Analytical Method Name	CU routine teph	r									For mine	als: Repo	rt unnorma	alized data	and the or	riginal tota	Is: For Fe	Ti Oxides.	report br	oth tota
ANALYTICAL METHOD D	DI https://doi.org/1										REPOR		WEIGHT	PERCEN	TAGES	(m/m%)		FLEME	NTS FX	CEPT
TECHNIQUE (EPMA or SI	EPMA							-			REPOR		TA - Dat	a must n	ot he cer	nsored (r	emoved	or repla	ced wit	h zer
NSTRUMENT	ARL SEMO							-		-	Data lines	with lorg	nogotivo	u muot n	uld be set		these how	on repla	nepham.	. usiels I
ABORATORY	Concord Univers										Data mes	with larg	Te eveld	values sno	uiu be sei	aside as i	nesenav	e potential	problems	with
Abolicatoral	Concord Onivers	-									Recomin	iended.	TO avoiu i	ounding	enor, rep	on at lea	ist one e	ixtra signi	incant ng	jure (
Comple and on	I nonulation i	a smallet in t		nel enclution a	a ata data		_				Recomn	ended:	f an expli	icit correc	tion for ti	me-chan	ging cou	nt rates is	s utilized	(e.g.
sample, grain, and	a population il	correlation	Additio	nai analytical r	neladala						Analyz	ed par	ameters	s (e.g. c	510Z, T	102, 10	otal, Na	-101%)	, керо	n no
	1001	GVP Event		ANALYSIS DATE	ANALYTICAL	Method	Method	Beam	NUMBER	DATA	0.00	T:00		E OT					WAR.	
SAMPLE ID	IGSN	or Episode	Analyst	and TIME	SESSION ID	Name	DOI	Diameter		TYPE	5102	1102	AI203	FeOI	MnO	MgO	CaO	Nazo	K20	P2
VKST 24075-Tephra (CUT	9. BOF00000C	10	0000-000	177720 7:30 PM	2020-01-01-A			5	ANALISES	Single	58.12	1.10	13.71	4.59	0.078	1.32	3.39	4.34	2.91	0.3
VRST 24075-tephra (CU1	9 BOF00000C		0000-000	1/7/20 7:44 PM	2020-01-01-A			5		single	66.33	1.19	14.44	5.16	0.073	1.38	3.69	4.51	2.79	0.3
VRST 24075-tephra (CU1	9 BOF00000C		0000-000	1/7/20 7:58 PM	2020-01-01-A			5		single	66.17	1.15	14.77	5.08	0.077	1.45	3.72	4.35	2.80	0.2
VRST 24075-tephra (CU1	9 BOF00000C		0000-000	1/7/20 8:01 PM	2020-01-01-A			5		single	65.99	1.13	14.60	5.21	0.080	1.60	3.79	4.30	2.85	0.5
VRST 24075-tephra (CU1	9 BOF00000C		0000-000	1/7/20 8:05 PM	2020-01-01-A			5		single	66.67	1.14	14.65	4.84	0.087	1.53	3.57	4.23	2.90	0.2
RST 24075-tephra (CU1	9' BOF00000C		0000-000	2020/01/07	2020-01-01-A			5	17	Mean	66.24	1.16	14.50	5.13	0.080	1.53	3.73	4.37	2.83	0.3
VRST 24075-te				2020/01/07	2020-01-01-A			5	17	StDev	0.91	0.07	0.50	0.29	0.016	0.16	0.34	0.13	0.22	0.
R	esearc	:h sai	mple								_									
//RST 24075-te	000010		npio	./7/20 7:37 PM	2020-01-01-A			5		single	72.65	0.432	14.40	2.27	0.078	0.441	1.48	4.09	3.91	0.0
WRST 24075-tepma (oo 1	5 501000000		0000-000.	1/7/20 7:40 PM	2020-01-01-A			5		single	71.99	0.424	14.70	2.22	0.072	0.441	1.46	4.78	3.75	0.
VRST 24075-tephra (CU1	9 BOF00000C		0000-000	1/7/20 7:47 PM	2020-01-01-A			5		single	64.47	1.12	14.58	5.63	_					0.:
WRST 24075-tephra (CU1	9 BOF00000C		0000-000	1/7/20 7:51 PM	2020-01-01-A			5		single	63.78	1.06	15.24	5.67	01	utlier	anal	yses	too	0.2
WRST 24075-tephra (CU1	9 BOF00000C		0000-000	1/7/20 5:58 PM	2020-01-01-A			5		single	62.05	1.073	15.19	0.93	0.081	0.412	1 50	2.02	2.26	0.
MRST 24075-tephra (CU1	BOF0000C		0000-000	1/7/20 7:55 PIVI	2020-01-01-A			5		single	67.27	0.362	16.49	2.03	0.161	0.413	2.12	£.92 5.20	3.30	0.
WK31 24075-tephila (CO1	9 BOF00000C		0000-000.	1/7/207.54 FW	2020-01-01-4					single	07.27	0.744	10.40	3.74	0.101	0.950	2.12	5.20	2.93	0
HVO-2G	-				2020-01-01-A			8		single	50.23	2.80	13.81	11.20	0.140	7.32	11.47	2.21	0.528	0.3
HVO-2G	1909	21000	oton	dard	2020-01-01-A		-	8		single	50.23	2.79	13.68	11.17	0.173	7.38	11.51	2.24	0.559	0.3
HVO-2G	1999 (21922	Stan	uaru	2020-01-01-A			8		single	50.25	2.79	13.63	11.04	0.200	7.41	11.56	2.25	0.551	0.3
BHVO-2G		_	_	_, .,	2020-01-01-A			8		single	50.05	2.82	13.61	11.35	0.158	7.45	11.46	2.28	0.524	0.2
PLN/O 2G			0000-000	1/7/20 11:17 PM	2020-01-01-4			5		single	50.62	2 84	13 54	10.95	0.216	7.34	11.52	2 21	0.493	0.3

- This work has relatively comprehensive data and metadata coverage.
 - Field data in StraboSpot
 - Sites, samples, and cores in SESAR
 - Methods, geochemistry, and additional metadata at EarthChem
- Developing a schema for Sparrow to help capture most data and metadata during the progress of laboratory work flows

• • • < > 🖓 sp	parri SqL Query
🗮 geo_entity	1 SELECT datum.datum_id,
geography_columns	2 datum.analysis_id,
	datum value
geometry_columns	5 datum.error.
instrument	6 datum.unit,
	7 datum.parameter,
instrument_session	<pre>8 datum.error_metric,</pre>
instrument session	<pre>9 datum.is_computed,</pre>
	10 datum.is_interpreted,
project	datum.is_bad,
project publication	datum is public.
	datum.session id.
project_researcher	15 datum.session_index,
project sample	<pre>16 datum.sample_id,</pre>
	datum.sample_name,
publication	18 datum.technique,
raster columns	19 datum.date,
	<

- Developing a schema for Sparrow lab data system with comprehensive coverage of tephra data and metadata – adaptable to e.g. min/pet/geochron too
 - Projects, researchers, funding, and publications
 - Field locations, strata, and cores
 - Samples, sample curation, and geochemical reference materials
 - Sample preparation and resulting fractions, grain mounts, and thin sections
 - Analytical instruments, methods, and sessions
 - Geochemistry with full association of sample and reference material/calibration (QC) data

- Optical and electron microscopy images (see also StraboMicro)
- Grain size sieve data and discrete measurements
- Grain type (componentry, mineralogy) and grain density
- Volcanic source assignment using Smithsonian GVP IDs
- Data access rights and embargos
- ORCIDs, IGSNs, DOIs, grant IDs, etc.
 captured as available
 Add PIDs for labs and instruments?

- Building on multiple components for an inter-connected ecosystem spanning the field, lab, and data repository
- PIDs key for linking related information within and across data systems

Approach / Philosophy / Needs

- I'm a big fan of the databased from birth approach e.g. in StraboSpot for the field
- I'm a fan of integrated databases wherever possible instead of just heterogeneous file-based repositories
- We need more use of the above, especially for lab workflows and geochemistry.
- By capturing the data and metadata on the fly, FAIR archiving of research outputs in *integrative open databases* becomes much easier. And, we'll get more comprehensive metadata too for better data provenance and improved re-usability.
- Right now, data and metadata archiving is still much too labor intensive and thus a huge barrier for most researchers.
- The more readily we can capture key information as it is generated, the more people will do it and the better all of this FAIR and open data stuff will work out.
- PIDs are really important for a connected FAIR data-metadata ecosystem. Adding

Thoughts about Instrument-Facility PIDs

- Improved data provenance better access to information about analytical facilities where data is generated
- Better linking of instruments, labs, technicians, grants, methods, data, and publications
- Better discovery of similar / related datasets from the same lab or discovery of potential collaborators
- Better tracking of impacts of equipment/facility funding (makes funders happy)

Thoughts about Instrument-Facility PIDs

- Could have instrument/facility landing pages similar to ORCID records
 - Connections to all of the previous
 - funding inputs e.g. grants
 - research outputs e.g. datasets, publications
 - etc.
 - Instrument history initial installation, major changes/upgrades, relocation to different institution
 - Laboratory staff history potential to better credit technicians, link to ORCIDs
 - Instrument capabilities?
 - Lab specializations?