
Facility and Instrument PIDs in the Materials Research Data Domain

how do we break the data barrier?

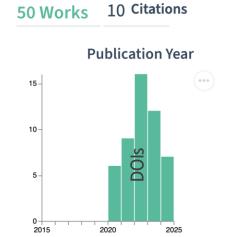
David Elbert: elbert@jhu.edu

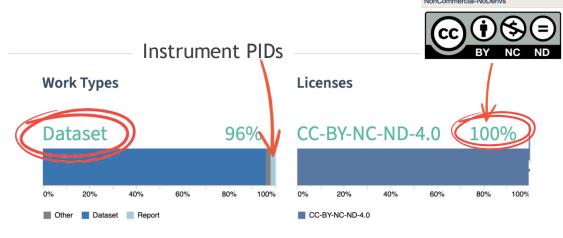
CDO PARADIM Materials Innovation Platform (MIP)
ARL HTMDEC Extreme Data PI
IMQCAM NASA STRI
NSF DMREF
DOE Supported Catalysis
Materials Research Data Alliance (MaRDA)
MaRCN FAIROS-RCN

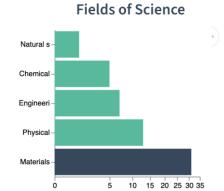
Illegitimi non carborundum

Facility and Instrument PIDs in the Materials Research Data Domain

- Driving Motivations in Materials Science and Engineering
 - PIDs Serve PIDs How can they serve science and society?
- PID Motivators
 - Value Added Tools
- Challenges:
 - Links Not Labels Dynamic?
 - Can We Go Faster? backend value, schema changes?
 - Gaps what is a gap analysis in a rapidly changing landscape?






Recap: 79 Published Datasets

CC-BY-NC-ND - Attribution-

50 Curated PARADIM Publication Datasets

- 33 PARADIM DOIS
- 17 Other Publishers
 - 7 Zenodo
 - 2 Phys Rev Materials
 - 2 Jour App Phys
 - 1 Fighare
 - 1 Materials Project
 - 1 MDF
 - 1 ICSD (CCDC FIZ Karlsruhe)
 - 1 GT Library
 - 1 PDC

25 "Raw" PARADIM Publication Datasets

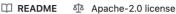
- 11 PARADIM DOIS
- 14 Other Publishers or No DOI
- 4 Collaboratively Curated Datasets
- 2 Reports

R: License and Relevant Metadata

- CC-4.0-BY-NC-ND
- GEMD Knowledge Graphs

Our PID Experiment

	А	В	С	D	E	F	G	Н	
1	Identifier	Name of Instrument	URL	Date	Owner	Manufacturer	Model	Description	Instrument Type
2		IT700 SEM		2024	MCP	JEOL	JSM-IT700HR	Its new electron gun with spatial resolution of 1 nr	Scanning Electr
3		F200		2024	MCP	JEOL	JEM-F200	The JEM-F200 is equipped with a Cold Field Emiss	Multi-purpose E
4		GrandARM		2024	MCP	JEOL	JEM-ARM300F2 GRAND ARM™2	It enables observation at ultrahigh spatial resoluti	Transmission El
5		FIBSEM		2024	MCP	ThermoFisher Scientific	Helios 5 UC DualBeam	The Thermo Scientific™ Helios™ 5 UC DualBeam is	Focused Ion Be
6		MicroCT		2024	MCP	RX Solutions	Easytom	EasyTom S is a highly configurable CT system. A co	Computed Tome
7		XRD - Bruker		2024	MCP	Bruker	D8 ADVANCE Plus	It represents the ultimate X-ray platform for multi-	X-Ray Diffractio
8		XRD - Powder		2024	MCP	Malvern Panalytical	Aeris Powder X-ray diffractometer	The Malvern PANalytical Aeris research edition po	powder x-ray dit
9		DED		2024	MCP	FormAlloy	L2	FormAlloy's award-winning directed energy depos	Directed Energ
10		PIPS		2024	MCP	Gatan	PIPS II	X,Y stage permits alignment of argon beams to reg	Precision Ion Po
11		ICP-OES		2024	MCP	Agilent	OES	It is a powerful method for analyzing the concentr	Inductively Cou
12		Bioprinter		2024	MCP	RegenHu	R-GEN 200	The R-GEN 200 bioprinter embodies this innovation	Bioprinter
4.0									


- 11 Lab Instruments
- Curator and Lab Scientist
- Spreadsheet of PIDInst Schema
- Notebook to mint

Next Steps:

- Derived webpage
- Derived Facilities Doc
- IGSN

```
# Construct the data payload for each record if not a
      data_payload = {
          "data": {
              "type": "dois",
              "attributes": {
                  "prefix": "10.34863",
                  "identifiers": [
                          "identifier": "1234567",
                          "identifierType": "SerialNumber"
                  "creators": [
                          "nameIdentifiers": [
                                   "schemeUri": "https://orc
      # Convert the payload to JSON
      data = json.dumps(data_payload)
      # Send the POST request
      response = requests.post(api_endpoint, auth=(username
      if response.status_code == 201:
          doi = response.json()['data']['id']
          timestamp = datetime.datetime.now().isoformat()
          print(f"DOI {doi} minted for {row['Name of Instru
          # Log success to CSV
          with open('doilog.csv', 'a', newline='') as csvfi
              logwriter = csv.writer(csvfile)
              logwriter.writerow([timestamp, row['Owner'],
          print(f"Failed to mint DOI for {row['Name of Inst
Bulk minting DOIs for files in TEST.xlsx
```

DOI already minted for F200. Skipping...
DOI already minted for GrandARM. Skipping...
DOI 10.34863/rgn4-3j98 minted for FIBSEM

jhu_pidinst

Pilot for Instrument PIDs in JHU Labs

Getting Started:

 Upload the data Excel sheet using the format of "PIDInst Excel Template" - Identifier and URL columns should stay empty.

Christine Park

- 2. Edit datacite-api-config.json
- 3. Open datacite-api-notebook, change path = 'your_excel_name.xlsx', and run!

Completed:

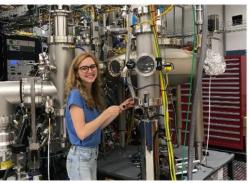
Jupyter Notebook to automate the process of minting DOIs for records in an Excel file, logging each successful operation to a CSV file.

Expecting:

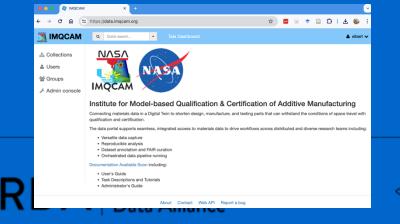
- Table of instrument metadata for a suite of instruments in PARADIM, MCP, and the Malone SEM (including DOI
 once minted in DataCite)
- 2. Code to:
- 3. i. use DataCite API to access DOI and retrieve JSON of metadata
 - ii. Jupyter Notebook to generate Facilities Document mock-up by listing DOIs of instruments
 - iii. Jupyter Notebook to generate static html page for instrument from DOI
- 4. Thoughts/Commentary/Iteration?
- 5. Once that is working can we envision a way to keep the instrument metadata list here and have a script automatically create DOIs for newly added instruments and modify metadata for changes to existing instruments (maybe with DOI version increment?)
- 6. What is the best way to trigger the automatic step envisioned? Part of CUCD or a different runner that watches changes in this repo?

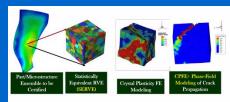
Motivators: Grand Challenges – Advanced Materials

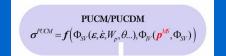
Proposed definition/description of AdMas	References
Any material that, through the precise centrel of its composition and internal structure, finances as artis of experional properties (mechanical, electric, optic, magnetic, etc.) or functionalities (self-repairing, shape change, decontamination, transformation of energy, etc.) that differentiate it from the rest of the universe of materials, or one than, when maniferent through advanced manufacturing schildeges,	European Commission ⁶⁰
Materials that are rationally designed to have new or enhanced properties, and/or targeted or enhanced structural features with the objective to achieve specific for improved functional performance	OECD11
Materials that are rationally designed through the precise control of their composition and internal or external structure in order to fulfil new functional recuirements	The German Environment Ages
Materials, and their associated process technologies, with the potential to be exploited in high value-added products	UK Technology Strategy Board
Materials that have been developed to the point that unique functionalities have been identified and these materials now need to be made available in quantities large enough for innovators and manufacturers to test and validate in order to develop new products	12
Materials that are specifically engineered to exhibit novel or enhanced properties that confer superior performance relative to conventional materials	1


DOI: 10.1039/d2va00128d

PARADIM Quantum Materials







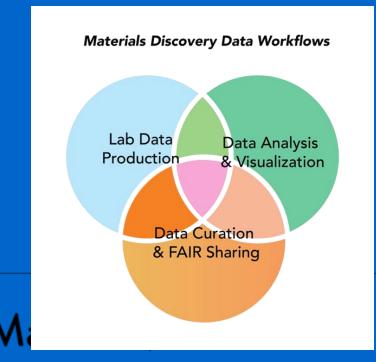
IMQCAM Certified Metal-Additive Parts Manufactured in Space

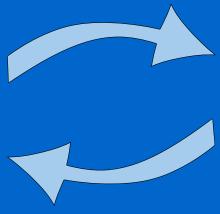
HOPKINS EXTREME MATERIALS INSTITUTE

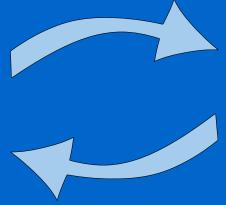
Motivators: Societal Grand Challenges

Materials Genome Initiative (MGI)

- 2011 Interagency Initiative (Obama Administration)
 - Materials Discovery/Deployment Accelerator
 - OSTP Subcommittee Explication and Coordination
 - Funding: NSF, DOE, DOD, NIST (NASA, NIH)
- 2022 MGI Strategic Plan "2.0"
 - Unify the Materials Innovation Infrastructure (MII)
 - computational/experimental/integrated platforms/data infrastructure
 - national materials data network (MaRDA)
 - unify/incentivize through Grand Challenges
 - Harness the Power of Materials Data
 - Al-Ready Data and Al-Driven R&D
 - Educate, Train, Connect R&D Workforce

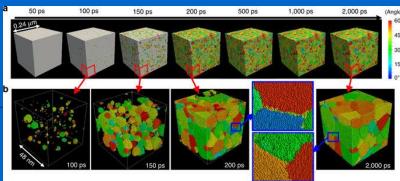





Motivators: Data and Workflows

Fundamental Materials Problems

- Understand how a material works
- Reveal structure-property-synthesis relationships
- Provide path to make designed materials
- Expand knowledge of parameter and design space
- Develop AI/ML to accelerate solutions



Landscape is Changing

Automation + Decisions = Autonomy

MAPs: Accelerating materials research and development to meet urgent societal challenges

Simon P. Stier^{1*}, Christoph Kreisbeck², Holger Ihssen³, Matthias Albert Popp¹, Jens Hauch⁴, Kourosh Malek⁵, Marine Reynaud⁶, Fedor Goumans⁷, Johan Carlsson⁸, Ilian Todorov⁹, Lukas Gold¹, Andreas Rider¹, Wolfgang Wenzel^{1*}, Shahbaz Tareq Bandesha¹, Philippe Jacques^{1†}, Francisco Garcia-Moreno¹⁵, Oier Arcelus⁶, Pascal Friederich¹⁶, Simon Clark¹⁵, Mario Maglione¹⁴, Ansia Laukkanne¹⁵, Jranoi Eligio Castelli¹⁶, Montserrat Casas Cabanas⁸, Javier Carrasco⁶, Helge Sören Stein¹⁷, Ozlem Ozcan¹⁸, David Elbert¹⁹, Tejs Vegge¹⁶, Sawako Nakamaz²⁰, Monica Fabrizio¹⁸, Mark Kozdras²²

Affiliations:

¹Department Digital Transformation, Fraunhofer Institute for Silicate Research ISC; Neunerplatz 2, 97082 Würzburg, Germany

²Aixelo Inc.; Cambridge, MA 02141, US

³Helmholtz Association; Rue du Trône 98, 1050 Bruxelles, Belgien

⁴Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen-Nürnberg for Renewable Energy (H1 ERN), Institute of Materials for Electronics and Energy Technology (i-MEET); 91058 Erlangen, Germany

⁵Forschungszentrum Jülich GmbH, Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research (IEK); 52428 Jülich, Germany

6 Centro de Investigación Cooperativa de Energías Alternativas (CIC energiGUNE), Basque Research and Technology Alliance (BRTA); Parque Tecnológico de Álava, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain

⁷Software for Chemistry & Materials BV; De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

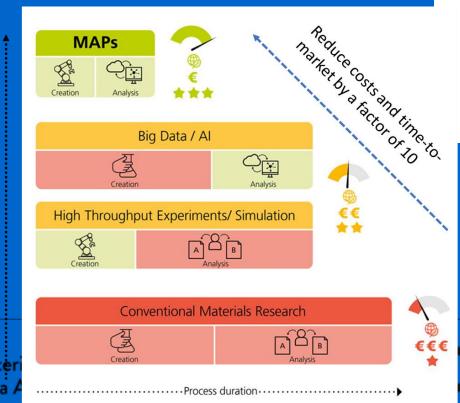
⁸Dassault Systemes Deutschland GmbH; Cologne, Germany

Scientific Computing Department, Science and Technology Facilities Council, Daresbury Laboratory; Warrington, UK

¹⁰Institute of Nanotechnology (INT), Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

¹¹EMIRI AISBL; Rue de Ransbeek 310, B-1120 Brussels, Belgium

¹²Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie; Hahn-Meitner-Platz 1, Berlin 14109, Germany


¹³SINTEF Industry, New Energy Solutions; Sem Sælands vei 12, Trondheim, 7034 Norway

l⁴Institut de Université Condensée de Bordeaux (ICMCB)-UMR 5026, CNRS, Avenue du Docteur Schweitzer, F-33608 Pessac, France

Avenue du Docteur Schweitzer, F-33608 Pessac, France

Avenue du Docteur Schweitzer, F-3608 Pessac, France

Avenue du Bocteur Schweitzer, F-3608 Pessac, F-3608 Pessac, F-3608 Pessac, F-360

Accelerating
Materials
Solutions
to Meet
National &
Global

Challenges

A Workshop in Support of the MGI Strategic Plan

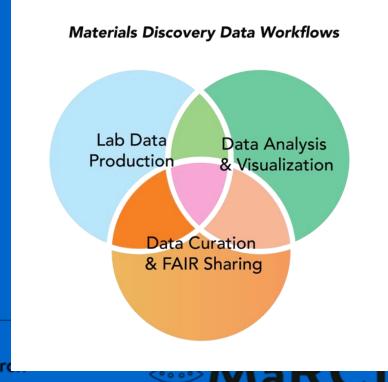
Subcommittee on the N

Accelerated Materials Experimentation Enabled by the Autonomous Materials Innovation Infrastructure (AMII) A Workshop Report

Date: June 10th-11th, 2024 Time: 8.00 AM - 5.00 PM

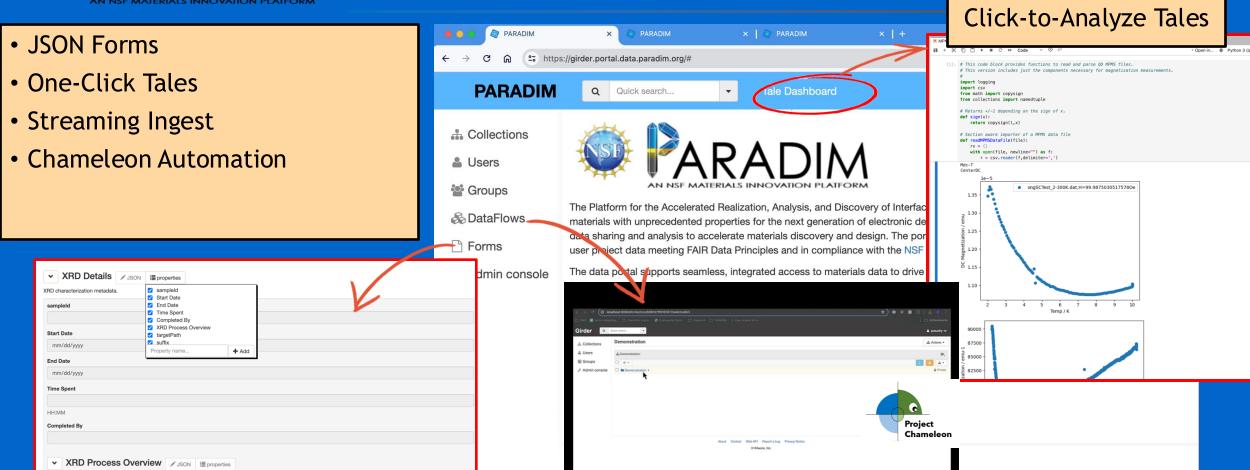
Venue: National Science Foundation (NSF)

Room 2020/2030 2415 Eisenhower Ave Alexandria, VA 22314



Motivators: Breaking the Data Barrier

How can we aggregate data in meaningful ways across complex scientific workflows?

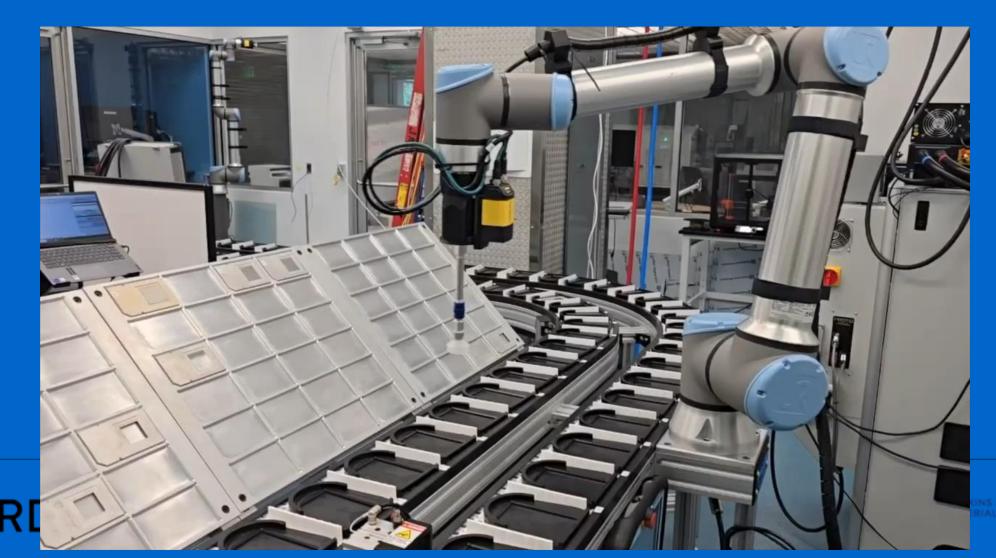


Automation in Data Portals

Schema Validated Metadata Entry

0-20

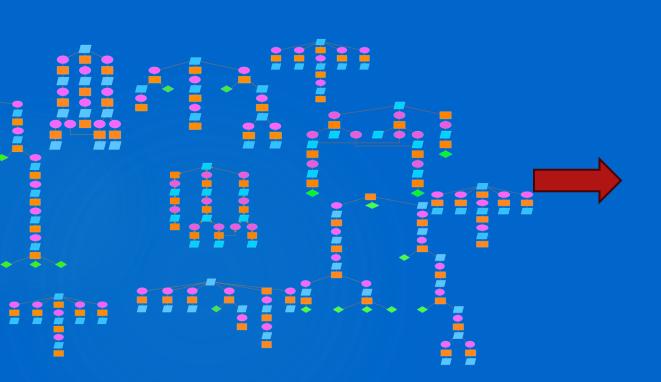
Bruker Instrument Details string

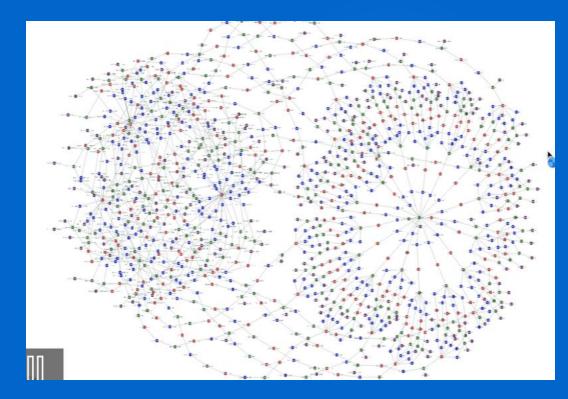


Seamless Interoperability

Automation in Labs

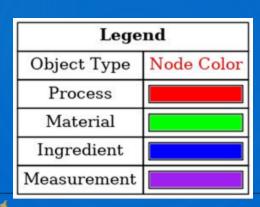
- High Throughput
- Autonomy

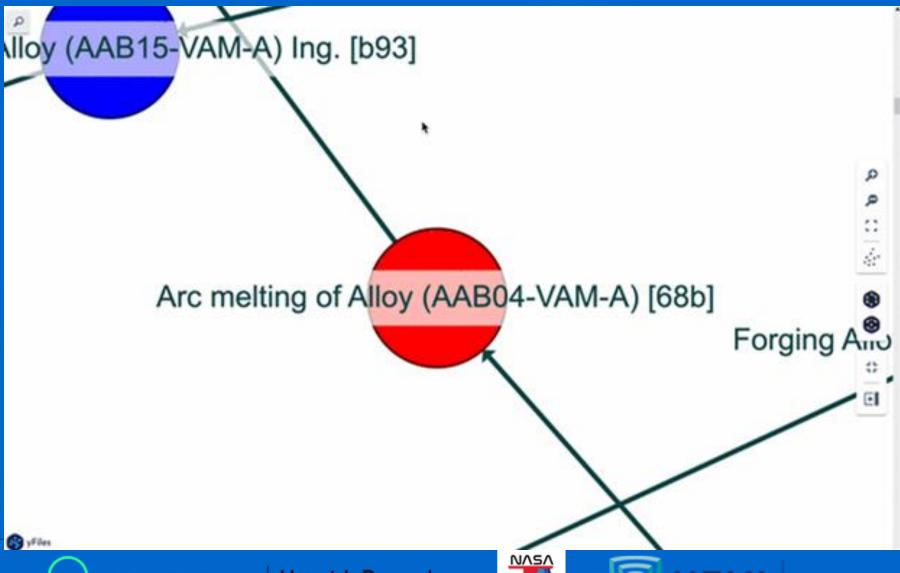



Automation in Knowledge Graphs

Concepts

HTMDEC Data

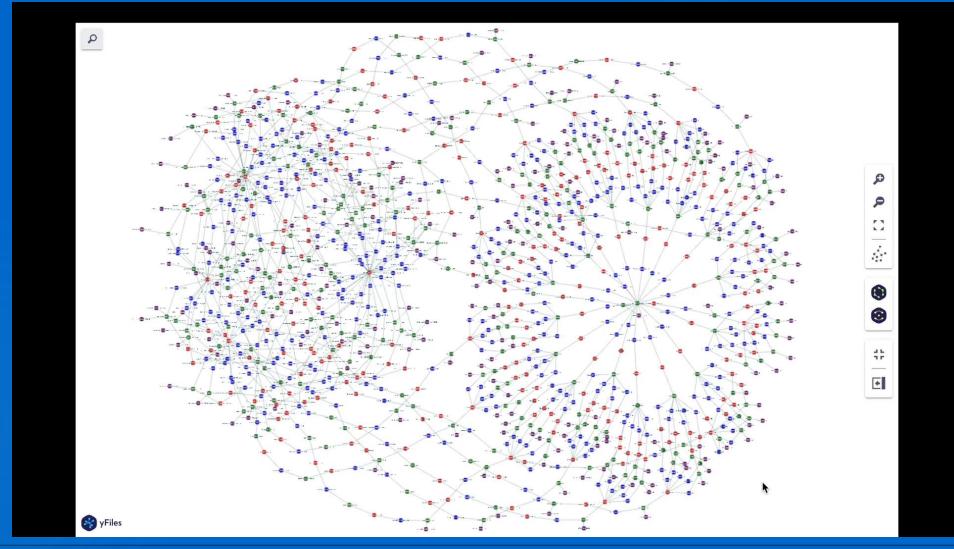


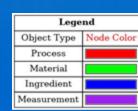


Automation in Knowledge Graphs

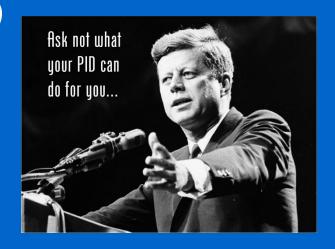
Birdshot: Arroyave and Karaman







Automation in Knowledge Graphs



PIDS Are Critical to any Roadmap to Foundational Knowledge Graphs

What We Have (OpenMSI/HTMDEC/VariMat/PARADM)

- GEMD Model
- Automated Processing
- Workflow Building Blocks

What We Need

- Simplify the Simple Parts (PIDs for samples and out-of-scope parts)
- Barrier Removal (portal and infrastructure at low/no cost)
- Scale out

