Facility operation - Key issues and opportunities

Kevin Knupp (acting SWIRLL director) Preston Pangle (MAPNet* facility manager) Severe Weather Institute – Radar and Lightning Laboratories University of Alabama in Huntsville

Facilities available for use by the atmospheric science community

Other groups that manage mobile atmospheric facilities: Next slide

NSF Supported Observing Facilities used for Atmospheric Science Research

Lower Atmosphere Observing Facilities (NCAR & U. Wyoming)

https://www.nsf.gov/geo/ags/programs/fare/index.jsp#cif

University of Wyoming King Air - https://www.uwyo.edu/atsc/uwka/ NSF/NCAR C-130 - https://www.eol.ucar.edu/observing_facilities/c-130 NSF/NCAR GV - https://www.eol.ucar.edu/observing_facilities/nsfncar-hiaper-gulfstream-gv NCAR Airborne Instrumentation - https://www.eol.ucar.edu/airborne-instrumentation NCAR Integrated Sounding System (ISS) - https://www.eol.ucar.edu/observing_facilities/iss NCAR Integrated Surface Flux System (ISFS) - https://www.eol.ucar.edu/observing_facilities/isfs NCAR S-Pol Doppler Radar (S-POL) - https://www.eol.ucar.edu/instrumentation/remote-sensing/s-pol

Community Instruments and Facilities (CIF)

Radars

University of Illinois at Urbana-Champaign - Flexible Array of Radars and Mesonets (FARM) University of Oklahoma Norman Campus - Mobile Rapid Scan Doppler Radar SUNY at Stony Brook - Millimeter-wavelength Radar Facility for Cloud and Precipitation Research Colorado State University - Sea-Going and Land Deployable Polarimetric (SEA-POL) Radar *Remote Sensing Suites* University of Wisconsin-Madison - <u>SSEC Portable Atmospheric Research Center (SPARC)</u> University of Alabama in Huntsville - <u>MAPNet</u> *Laboratory Facilities* Clemson University - <u>Clemson Soot Photometer</u> Michigan Technological University - <u>PI Chamber</u> North Carolina State University - <u>NC State Ice Nucleation Cold Stage</u> University of Utah - <u>Storm Peak Laboratory</u>

Deployment for Hurricane Laura landfall

MAPNet is a facility with four platforms. MIPS is a platform with multiple instruments and sensors. Some instruments also have embedded sensors.

MIPS instruments and sensors

Instruments

- 1) 915 MHz Radar Wind Profiler
- 2) X-band Profiling Radar
- 3) Microwave Profiling Radiometer
- 4) CL61 lidar ceilometer
- Ka-band profiling radar (can be added; shared with MoDLS)
- Parsivel (laser) disdrometer\Digital camera
- 7) Sonic anemometer (RM Young 8100, 3 m)

<u>Sensors</u>

- a) RM Young 05103 wind monitor (10 m)
- b) Temperature sensor (10 m)
- c) Temp & Relative Humidity (2 m)
- d) Pressure (2 m)
- e) Rainfall
- f) PM2.5

Truck	DOW6	DOW7	cow	CROW	CROW	CROW
Configuration Name				DOW8	RSDOW	Mini-COW
Configuration	dual-freq, dual-pol	dual-freq, dual-pol	dual-freq, dual-pol	single-pol	7-beam rapid-scan	dual-pol
Band	X	х	С	х	х	С
Tx Power Peak (kW)	2x 250	2x 250	2x 1000	1x 250	40	1x 1000
PRF Range (Hz)	500-6000	500-6000	500-6000	500-6000	500-6000	500-6000
	stagger	stagger	stagger	stagger	stagger	stagger
Pulse Length (us)	0.167-1.0	0.167-1.0	0.167-1.0	0.167-1.0	0.1-1.0	0.15-1.0
Scan Rate deg/s	50	50	24	50	7-s vols	50
Products (typical)	LDR, ZDR, ρ	HV, V, Z, SW,	NCP, full IQ	Z, V, SW, N	Z, V, SW, NCP, full IQ	
Beamwidth (deg)	0.93	0.93	1	0.93	0.8 x 0.9	1.5
Gate Length Range (m)	12.5-600	12.5-600	12.5-600	12.5-600	11-600	12.5-600
Met/Comm Mast (m)	18	18		14	14	14

• Six radars and numerous other surface systems

Example 2 FARM: Flexible Array of Radars and Mesonets

Research aircraft

- NSF-supported
- Also NOAA, NASA, DOE, NPS, etc
- Most can be configured with various instruments (science goal dependent)
- Moving measurements present challenges (for aircraft remote sensing instruments in particular), but much has been done to improve data quality

NCAR/NSF C-130

Research Aviation Fec

Definitions

Descriptor	Definition	Examples
sensor	a device that provides a measurement when used in conjunction with a data logger that converts the signal (e.g., voltage, current, pulses) into a meteorological quantity and records the data.	Temperature or humidity sensor, pressure transducer, raingage (tipping bucket), wind monitor,
instrument	a device that acquires measurements of interest	Lidar, radar, radiometer, dipstick raingage, electric field meter, sonic anemometer, camera
platform	collection of multiple instruments, in many cases mounted on a vehicle (trailer), ship, or aircraft	MIPS, RaDAPS, DOW7, COW C-130
facility	one or more platforms or instruments that can operate independently and provide multiple measurements	MAPNet, FARM, Wyoming King Air, C-130,
network	multiple platforms or instruments usually arranged into a preconceived (but sometimes ad hoc) pattern	MAPNet, FARM, AMF3, NCAR ISFS

MAPNet 8 April 2024 eclipse

omack

Rio Vista

Recent example Deployment of the MAPNet for **SEEWAF: Solar Eclipse Effects** on Weather and Aerial Fauna

Maypearl

Antioch

Covington

Grandview

MAPNet network 8 April 2024 eclipse

Old Hillsboro Airport

MAX

Legend

Bardwell

RaDAPS

Whitney City Park

MIPS

County Line venue

MoDLS

Red circle: range ring of 30 km from the MAX radar □ very good bird detection within this range covering:

- Lake Whitney a)
- Aquilla Lake b)
- Navarro Mills Lake C)

Complexities of radars and other instruments: some things that can change (blue/green items more common):

- a) Transmitter
- b) Magnetron (part of transmitter assembly)
- c) Signal processor (receiver)
- d) Antenna dish

Consider also:

- i. Calibration
- ii. Maintenance schedule

"Complex" instruments: primary instrument with additional sensors

https://radiometrics.com/wp-content/uploads/2022/04/TechNote-MP-3000_Features_150515.pdf

https://radiometrics.com/products/

An important maintenance item is replacement of fan and filter within the ventilation unit. This can make a difference in measurement fidelity.

Some Key Issues for (MAPNet) and mobile facility operation

- 1. MAPNet is a small facility with limited personnel. One FTE (research associate) currently.
- 2. Managing frequent changes/upgrades/maintenance. Consider the MIPS example with many instruments and sensors.
- 3. Maintaining high data quality data.
- 4. Striving to be at the forefront with measurements needed to promote *transformational science* upgrade or enable when the budget allows
- With mobile operations, reproducibility of measurements may be difficult to impossible:
- Blocking by topography, trees, buildings, etc.
 affects both in situ surface measurements and ground based remote sensing measurements
- Contamination by ground clutter, especially problematic for lower-frequency radar profilers
- Presence of radio frequency interference is also location-dependent

DOE/ARM* Supported Observing Facilities used for Atmospheric Science Research

https://www.nsf.gov/geo/ags/programs/fare/index.jsp#cif

Instruments and networks of instruments

Example: ARM Mobile Facility 3 (AMF3)

Some networks are fixed, others may vary over some time interval

Network characteristics require documentation

*ARM: Atmospheric Radiation Measurement (not Adjustable Rate Mortgage)

DOE/ARM Supported Observing Facilities (Networks) used for Atmospheric Science Research

DOE AMF3 network Central Facility at BNF

- Numerous instruments
- 4 balloon soundings /day
- Guest instruments

Three supplemental profiling sites

- S20: ECS, DWL, MWR3C, IRT, MET, MFRSR, SIRS, EBS, STAMP, NOAA 449 MHz RWP
- 2) S30: 915, ECOR, IRT, LDIS, MET, MDRSR, SIRS, SEBS, STAMP
- S40: ECS, DWL, MWR3C, IRT, MET, MFRSR, SIRS, EBS, STAMP, NOAA 449 MHz RWP

Radars

- CSAPR C-band radar
- SACR Scanning K_a/W
 -band radar

DOE AMF3 network + MAPNet

Central Facility at BNF

- Numerous instruments
- 4 balloon soundings per day
- Guest instruments
- Ribbon cutting in March

Three supplemental profiling sites

- Courtland: ECS, DWL, MPR
 NOAA 449 MHz RWP
 Other UAH instr TBD
 Guest instr (UAH host)
- 2) SW: DWL, MPR, met
- 3) E: 915 MHz RWP, MPR, met

Radars

- CSAPR C-band radar
- SACR Scanning K_a/W
 -band radar

DOE/UAH combined network, Option 2 Central Facility at BNF

- Numerous instruments
- 4 balloon soundings per day
- Guest instruments
- Ribbon cutting in March

Three supplemental profiling sites

- Courtland: ECS, DWL, MPR
 NOAA 449 MHz RWP
 Other UAH instr TBD
 Guest instr (UAH host)
- 2) SW: DWL, MPR, met
- 3) E: 915 MHz RWP, MPR, met

Radars

- CSAPR C-band radar
- SACR Scanning K_a/W
 -band radar

Questions?

kevin.knupp@uah.edu