FAIR Facilities and Instruments:

Enabling transparency, reproducibility, and equity through persistent identifiers

NSF FAIR Open Science (FAIROS)
Research Coordination Network (RCN)
NSF Awards #2226396, 2226397, 222639

Presented by Claudius Mundoma, ABRF 2025 NERLSCD Chapter

Organizations & Personnel

Key Questions for the FAIR-ROS Project

What are your main reasons for assigning PIDs to facilities and/or instruments?

What questions need to be answered?

What guidance is needed?

What outcomes and products from the project would be most useful for researchers?

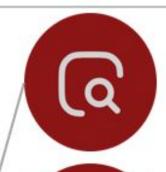
Project Goals

Develop

Develop a
Research
Coordination
Network (RCN)
focused on the
assignment of
Persistent
Identifiers (PIDs)
to research
facilities and
instrumentation

Compile

Compile use cases for why and how PIDs might be assigned to facilities and instruments


Facilitate

Facilitate the generation of expertise and guidance on the key topics of interest

Produce

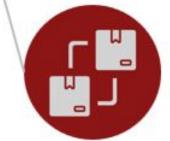
Produce & refine recommendations and lessons learned targeted toward the specific use cases

Key Questions

Findable (F)

How do we enable people to find relevant facilities or instruments?

Accessibility (A)


How do we enable facilities and instruments to be accessible by wider audiences?

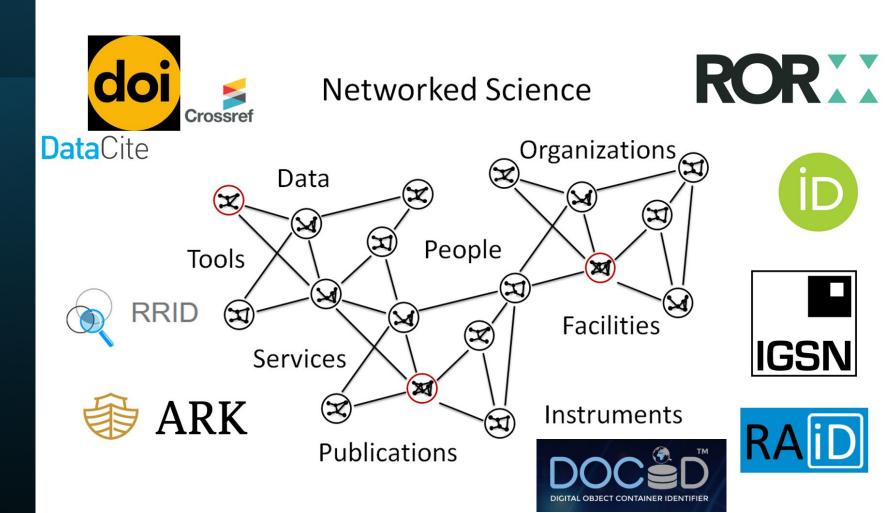
Interoperability (I)

How do we consistently capture relationships between persistent identifiers?

Reusability (R)

How can we incorporate information about facilities and instruments into data set provenance metadata more consistently?

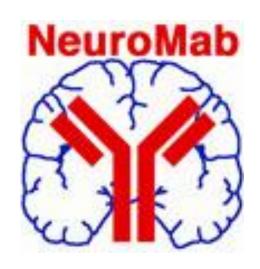
Note on Terminology


Definitions are important - but are not consistent

- a. What is a "facility"?
- b. What is an "instrument"?
- c. What other terms are used? (platform, site, core, device, ...)
- d. When does it matter?

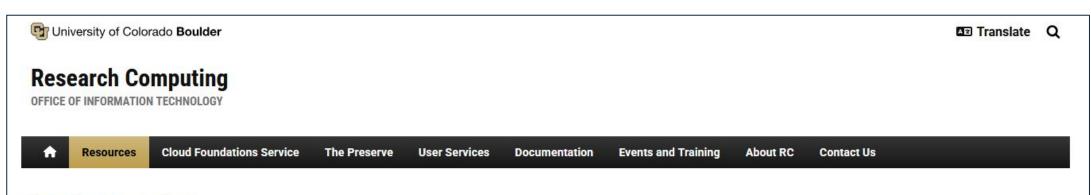
AT START: Less consistent Application of PIDs

Persistent IDs: Use cases



PIDs for Facilities and Instruments - NCAR

UC Davis/NIH NeuroMab Facility



https://ror.org/00fyrp007

Home > Resources > PetaLibrary

PetaLibrary

The PetaLibrary is a University of any researcher affiliated with the

Storage Options and Rates

Request a new PetaLibrary alloc

Renewals

User documentation

Terms of Service

Petalibrary Citation Language

Petalibrary Citations

Acknowledgement for use in publications

Use the following language to cite or acknowledge the PetaLibrary in any published or presented work whose data was stored in the PetaLibrary:

Data storage supported by the University of Colorado Boulder "PetaLibrary"

Project Advisory Committee

- Anita Bandrowski founder and CEO of SciCrunch
- David Butcher FAIR data management specialist at the National High Magnetic Field Laboratory
- Matthew Buys and Kelly Stathis Executive Director and Technical Community Manager at DataCite
- Zach Chandler Director of Open Scholarship Strategy, Stanford University
- Nate Herzog CoreMarketPlace project lead at Vermont Genetics Network
- Kevin Knudtson President of the Association of Biomolecular Resource Facilities (ABRF)
- Giri Prakash Section Head of the Earth System Informatics and Data Discovery section at Oak Ridge National Laboratory
- Dylan Ruediger Senior Analyst at Ithaka S+R
- Shawna Sadler Head of Outreach & Partnerships at ORCID
- Shelley Stall Sr. Director for Data Leadership at American Geophysical Union (AGU)

Workshop #1: September, 2023 – Boulder, CO

- Need: PIDs are essential for scientific reproducibility, data provenance, and crediting instrument providers
- PID Systems: Current PID usage is scattered and inconsistent across different systems used for research instrumentation
- Adoption: The focus should be on lowering adoption barriers and communicating value rather than choosing specific PID systems
- Metadata: Consider metadata alongside PIDs PIDs alone cannot solve all challenges
- Granularity: Start simple with granularity and evolution tracking, then increase complexity only as needed
- Resources: Instrument/facility providers face significant resource limitations in assigning and managing
- PIDs Value: Demonstrating clear value to users is critical for driving PID adoption and citation
- Incentives: Different stakeholders (researchers vs administrators) require different incentives for PID adoption

Workshop #1 report: http://doi.org/10.5065/zgsx-2d06

Workshop #2: August 2024- Tallahassee, FL

Emerging topics

- Need for facility and instrument PID recommendations as part of a national PID strategy
- Need for more robust infrastructure and services for facility and instrument PIDs
- Engagement needed with instrument manufacturers to adopt PID-supporting practices
- Engagement needed with journal publishers and editors on PID incorporation

Workshop #2 report:

http://doi.org/10.5065/jea7-yf24

Workshop #3: August 2024- NCAR -Boulder, CO

Emerging topics

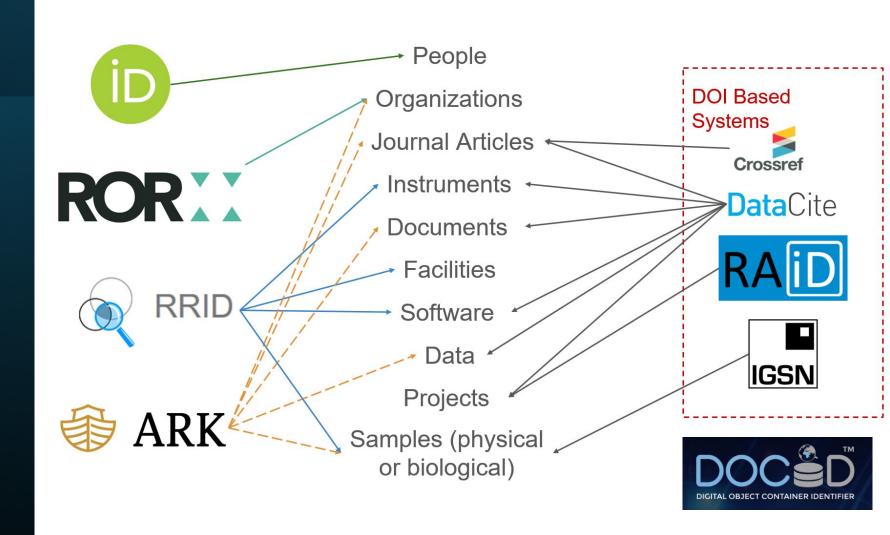
- Developed recommendations for PID implementation
- Formed consensus on which PID to use for what use case
- New project to look into equipment PIDs - focus on granularity
- Need to engage research enterprise software providers
 - Reference Managers
 - Stratocores
 - iLab
 - Protocols.io
 - etc...

Workshop #3 Draft Recommendations

PID Curators: August 2024- NCAR -Boulder, CO

ROR **ORCID RRID**

Common Themes


- 1. Use cases matter
 - a. Reproducibility and Replicability
 - b. Data provenance
 - c. Attribution: Track impact and citations
 - d. Discoverability and Collaboration: Find and share resources
- 2. PIDs are a starting point
 - a. Making PIDs and citations visible and actionable for researchers who use facilities and instruments is critical
 - Value from PIDs comes from integrating them into other systems (metadata systems, institutional systems, publishing systems)

Recurring questions

- What metadata needs to be included? Where should the metadata be collected and made available?
- At what granularity should PIDs be assigned?
 - Does every element/configuration of an instrument need it's own PID?
 - Do you need a general PID for the instrument or do you need a PID specifically for components?
- Scientific Instrument of Theseus
 - Instruments and facilities evolve over time
 - When is a new PID issued vs. metadata updated?
 - New software? New hardware?

PROGRESS: More consistent Application of PIDs

Persistent IDs: Use cases

CORE FACILITIES REPORT

CORE FACILITY →

PARENT ORGANIZATION

SOURCE OF DA...(1) -

YEAR -

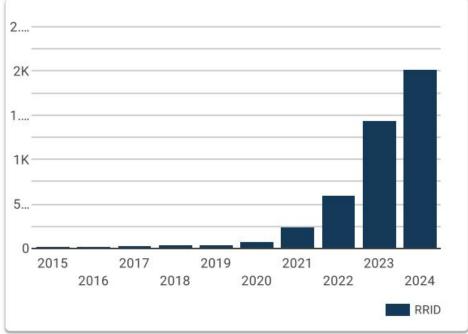
JOURNAL

SNIPPET/GRANT NUMBER -

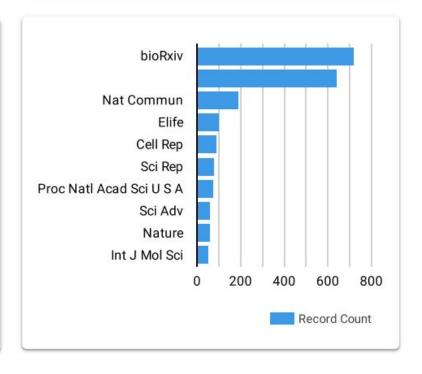
CORE FACILITY

552

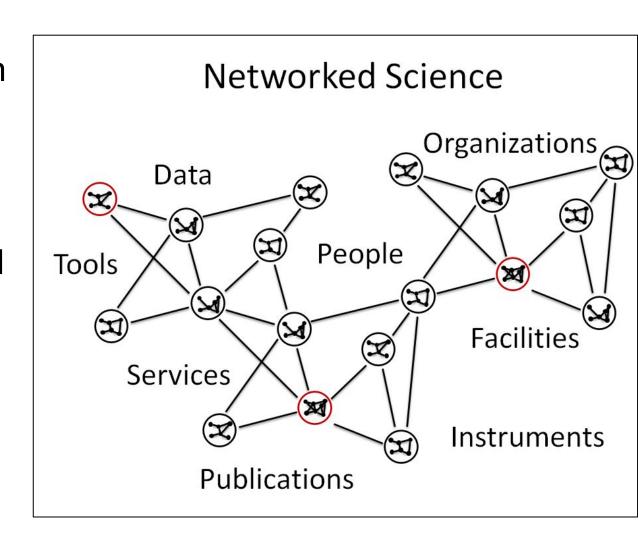
3,816


JOURNAL

815


CORE FACILITIES

NUMBER OF PUBLICATIONS FOUND BY GRANT OR RRID



JOURNALS

Creating and Maintaining PIDs?

- Instrument and facility providers often face significant resource limitations that make assigning, managing, and promoting PIDs challenging.
- How can we ensure PIDs are created and are up to date?
- How are connections between PIDs to be created and maintained?
- Where is funding going to come from?

Multiple Stakeholders - Distributed Responsibilities

Academic research institutions

National laboratories

Nonprofit organizations

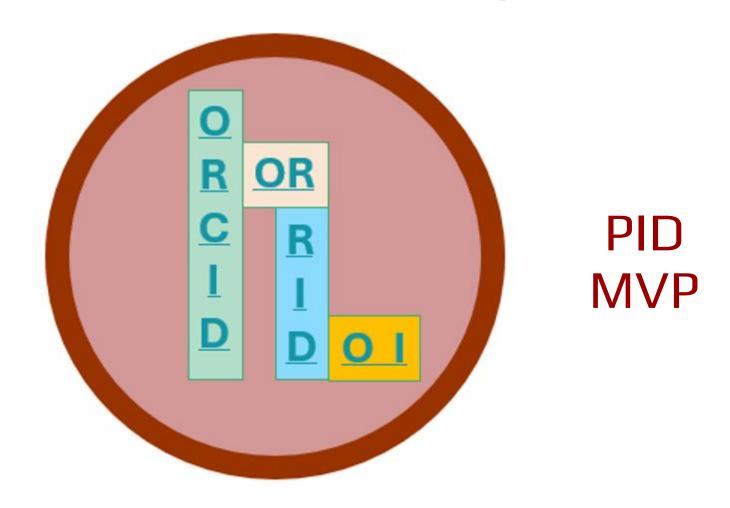
Instrument manufacturers

Facility and instrument operators

Research scientists/users

Publishers and editors

PID system providers (RRID, DOI, ROR)


ACT!:

Persistent IDs: Call to **ACTION**

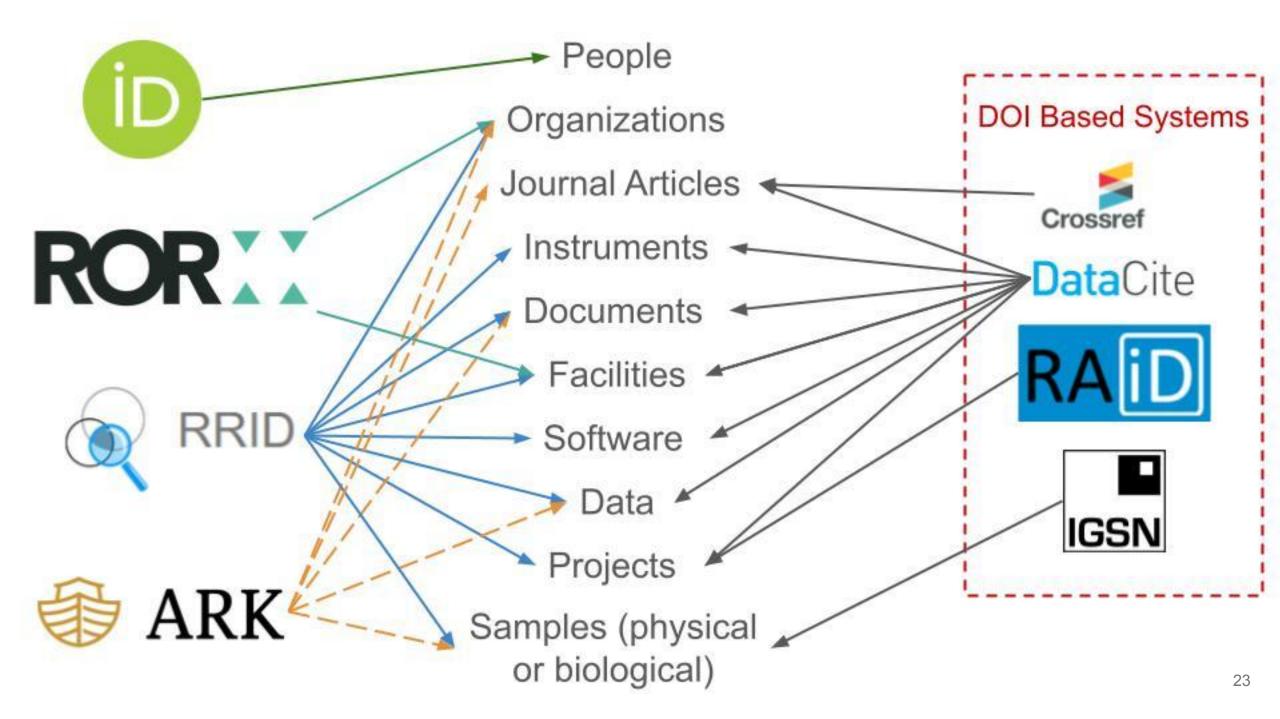
This is bigger than Rigor & Reproducibility
- Its Securing Funding,
- Core Facility workflows,

- Connected Labs

- Proper acknowledgement

THANK YOU!

Advisory Board Representation



Vermont Genetics Network

Motivating Examples

Connecting Facilities, Instruments, & Data

NSF NCAR HIAPER Gulfstream GV

https://doi.org/10.5065/D6DR2SJP

ACCLIP NSF/NCAR GV Instrument Data Merges - 10 Second https://doi.org/10.26023/2HAX-YPQB-GG0Q

FAIRO-1 Ozone Data

https://doi.org/10.26023/S3FA-R52G-ZS11

HIAPER Atmospheric Radiation Package (HARP) CCD Actinic Flux Spectrometers Photolysis Frequencies

https://doi.org/10.5065/D6MP51N7

. .

[686 datasets]

Project Activities

- Focus groups & presentations to relevant groups
 - NSF FAIR Open Science RCN project cohort
 - Earth science facility providers and users
 - FSU & CU campus facilities staff
 - CI Compass FAIR Data Working Group
 - Data Curation Network
- Conference engagement AMS, ABRF, ESIP, IASSIST, RDA, RDAP, Year of Open Science
- Sept 2023 Boulder Workshop 35 participants
- Aug 2024 Tallahassee Workshop 35 participants