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Background

A quantity often called the equivalent potential temperature is used to represent stability for adi-
abatic wet processes and to correspond to wet adiabats on thermodynamic diagrams. Potential
temperatures are generally defined to correspond to specific entropy (i.e., entropy per mass of dry
air) via the relationship cpxd lnΘx = ds where “x” indicates that various kinds of potential tem-
peratures can be defined that satisfy this relationship for different processes. The AMS glossary
restricts the term equivalent potential temperature to true adiabatic processes, where any condensed
water remains in the parcel, but the term is often used (and has been used in Bulletin 9 Appendix
B) to refer instead to the modified pseudo-adiabatic form (sometimes called pseudo-equivalent po-
tential temperature or pseudo-adiabatic equivalent potential temperature) in which the specific heat
capacity of any condensed water is neglected in the adiabatic process. This is equivalent to assum-
ing that any condensed water falls from or is otherwise removed from the parcel as it condenses. In
this memo, I will refer to the former potential temperature as the wet-equivalent potential temper-
ature (symbol Θq) and the latter as the pseudo-adiabatic equivalent potential temperature (symbol
Θp).1

The wet-equivalent potential temperature is actually easier to derive and calculate because it is
related to true adiabatic processes. It is defined as that temperature that would be reached if the
parcel is lifted adiabatically until all water vapor is condensed, then the dry air only is returned
adiabatically to a reference pressure (conventionally 1000 hPa). For a saturated parcel, it is defined
(Emanuel, 1994, p. 120, but with some changes in terminology) as:

Θq = T
(

p0

pd

)Rd/cpt

exp
(

Lvr
cptT

)
(1)

where pd is the pressure of dry air in the parcel (i.e., p− e where e is the water-vapor pressure),
Rd the gas constant for dry air, Lv the latent heat of vaporization of liquid water, r the mixing ratio
of water vapor, T the (absolute) temperature, and cpt = cpd + rtcw where cpd is the specific heat of
dry air at constant pressure, cw the specific heat of liquid water, and rt = r + rw is the total water
mixing ratio and includes the contribution from the liquid water mixing ratio rw. The assumption
made is that no ice is present or forms so that all condensation is to liquid water and remains liquid
water.2 If the parcel is not saturated, one can lift the parcel adiabatically to its condensation point

1Pseudo-equivalent potential temperature seems to me to be a poor term because the compromise is in the degree to
which the process is adiabatic, not the degree to which it is equivalent via a moist process. The term pseudo-adiabatic
equivalent potential temperature, as used by e.g. Davies-Jones (2009), although lengthy, is unambiguous and so is the
choice I have made. This memo uses the symbol Θp instead of Θe to avoid ambiguity with the definition in the AMS
Glossary.

2A similar potential temperature that applies to the condensate being ice can be constructed readily by straight-
forward replacements, including the latent heat of sublimation, the specific heat of ice, and the vapor pressure in
equilibrium with an ice surface.
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and use the values of T and pd at that point, or alternately include another term in (1) that includes
a correction dependent on the relative humidity (cf. Emanuel 1994 Eq. 4.5.11).

A complication in the equations forΘp or Θq is that some of the material properties involved,
including cpt , cw, and Lv, are not constant but vary with temperature. An accurate integration
along the adiabat, as needed to maintain the equivalence to entropy, would take into account that
variation. For Θp, some generalized equations have been developed that treat the variation in Lv
in various ways, mostly by using an adjusted value for Lv that produces the least compromise in
accuracy. See esp. Bolton (1980) and Davies-Jones (2009). Emanuel (1994) and the preceding two
references present derivations of the pseudo-adiabatic equivalent potential temperature.

Because I want to perform integrations that include representations of the temperature dependence
of the specific heats and latent heat as well as the Murphy and Koop (2005) representation of
equilibrium water vapor pressure, I will develop the appropriate differential form of the entropy
to use in such integrations. For an adiabatic process where all changes occur in equilibrium, the
molar entropy s′ is related to temperature T and pressure p (for a perfect gas) via

T ds′ = c′pdT − v′d p (2)

where primed quantities refer to molar quantities, such that c′p and v′are the molar heat capacity at
constant pressure and the molar volume, respectively. There are three contributions to the entropy
to consider for a moist air parcel: the entropy of the (i) dry air; (ii) water vapor; and (iii) liquid
water. If the respective mole numbers of these three components are n′d , n′v, and n′w, then

T ds′ = (n′dc′pd +n′vc′pv +n′wc′w)dT −n′dv′dd pd −n′vv′vde+L′vdn′v (3)

where pd is the pressure of dry air, e is the water vapor pressure, and L′v is the molar latent heat
of vaporization of liquid water. The last term in (3) arises because there is an entropy change
associated with the phase change from liquid water to water vapor, and this last term is the heat
released by that phase change.3 The other terms arise from summing (2) for the three individual
components.

The mixing ratios r andrw are, respectively, the masses of water vapor and liquid water per unit
mass of dry air:

r =
n′vMw

n′dMd

rw =
n′wMw

n′dMd
(4)

where Mw is the molecular weight of water (mass of water per mole) and Md that of dry air.
Dividing (3) by n′dMdT and setting ds′ to zero for an isentropic process leads to

3An additional contribution arises from the entropy increase associated with mixing of the water vapor and the dry
air, but this is insignificant and will be neglected.
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(cpd + rcpv + rwcw)
dT
T

− vd

T
d pd − r

vv

T
de+

Lv

T
dr = 0 (5)

where unprimed quantities cpd , cpv, cw, vd , vv, and Lv are specific quantities (i.e., per unit mass
of dry air for cpd and vd and per unit mass of water for cpv, cw, vv and Lv; e.g., cpd = c′pd/Md

and cpv = c′pv/Mw). For perfect gases, vd/T = Rd/pd and vv/T = Rw/e where Rd and Rw are the
gas constants for dry air and water vapor, respectively. Also, the ideal-gas form of the Clausius-
Clapeyron equation is

des

es
=

LvdT
RwT 2 (6)

and Kirchhoff’s equation (cf., e.g., Emanuel 1994, Eq. 4,4,3) is

dLV = (cpv− cw)dT . (7)

With e = es(T ) and r = rs(T ) = Mw
Md

es(T )/pd as corresponds to a saturated parcel, and with some
additional transformations as follow, all terms in (5) can be transformed into differential relation-
ships that only involve derivatives of T and p:

Lvdr
T

=
d(Lvr)

T
− r

dLv

dT
dT
T

=
d(Lvr)

T
− r(cpv− cw)

dT
T

rRw
des

es
= rRw

LvdT

RwT 2 =
Lvr
T

dT
T

d(Lvr)
T

= d
(

Lvr
T

)
+

Lvr
T

dT
T

d
(

Lvr
T

)
=

∂

(
Lvr
T

)
∂T


pd

dT +

∂

(
Lvr
T

)
∂ pd


T

d pd =
εT d

(
Lves(T )

T

)
pddT

dT
T

− Lvr
T

d pd

pd

where the transformation to dependence on T is a consequence of assuming that the parcel remains
saturated, and where the temperature dependence of Lv and the specific heats is implicit. Gathering
terms in (5) after these transformations leads to(cpd + rtcw)+

T ε

pd

∂

(
Lves(T )

T

)
∂T


pd

 dT
T

=
[

Rd +
Lvr
T

]
d pd

pd
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where rt = r + rw is the total water mixing ratio and where ε = Mw/Md . The result then gives a
relationship between T and pd:

dT
d pd

=
T Rd +Lvr

pd

(cpd + rtcw)+
T ε

pd

∂

(
Lves(T )

T

)
∂T


pd

−1

(8)

The result is a derivative that can be used for numerical integrations that take into account the
temperature dependence of the specific heats and the latent heat of vaporization and improved
representation of the equilibrium vapor pressure es(T ), as in Murphy and Koop (2005). This is
used below to evaluate the accuracy of representations of the equivalent potential temperatures.

Equation (8) is appropriate for the adiabatic process and so can lead to the wet-equivalent potential
temperature Θq. The similar formula for the pseudo-adiabatic equivalent potential temperature Θp
can be obtained by neglecting the heat capacity of the liquid water, and so would be the same as
(8) but with rt replaced by r.

Present Processing Code

The code from subroutine thetae.c includes the following code (where atx is converted to units of
kelvin earlier in the code):

tlcl = (2840.0 / (3.5 * log((double)atx) - log((double)edpc) - 4.805)) + 55.0;

...

theta = atx * pow((double)1000.0 / psxc, (double)0.28571);

exparg = ((3.376 / tlcl) - 0.00254) * (mr * (1.0 + (0.00081 * mr)));

...

PutSample(varp, theta * exp((double)exparg));

This is based on equation (38) from Bolton (1980):

ΘE = Θexp
{(

3.376
TL

−0.00254
)

r(1+0.81×10−3r)
}

(9)

where
TL =

2840
3.5lnTK − lne−4.805

+55 (10)

is the temperature at the LCL (Bolton 1980, Eq. (21)).
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Reasons For Proposing Changes

1. The equation selected from Bolton (1980) is the less accurate of several alternatives pre-
sented there. Davies-Jones (2009) has pointed out that the form given as equation (39) in
Bolton is more accurate, and Bolton also notes that.

2. Bolton (1980) also offers a different form for Θ that is more accurate than the one now in
use. His more accurate formula is:

Θp = ΘDL exp
{(

3.036
TL

−0.00178
)

r
(
1+0.448×10−3r

)}
(11)

where

ΘDL = Tk

(
1000

pd

)0.2854(TK

TL

)0.28×10−3r

(12)

is the potential temperature of dry air at the lifting condensation level (LCL) and TL is the
temperature at the LCL as given by (10). Equation (11 takes into account the effect of
humidity on the ratio of specific heats of the water-saturated air parcel. This form appears to
be a better choice than the one now in use.4

3. The Bolton fits were based on a representation of the equilibrium water vapor pressure that
is different from the one now in use in the RAF processing code. Bolton determined a fit
to the data of Wexler (1976), all of which was for temperature higher than 0◦C. He used
extrapolation of the measurements to lower temperature, but did not test his new fit for tem-
peratures below -35◦C. Because there are now more reliable representations of the water
vapor pressure (esp. Murphy and Koop 2005), it is important to check if the Bolton formula
(Bolton, 1980, equation (10)) is an adequate representation of equivalent potential temper-
atures calculated with the new data. More significantly, the Murphy and Koop formula is
based on estimates of the specific heat of liquid water in the supercooled region that vary
significantly, while previous analysis like those of Bolton and of Davies-Jones (described in
the next paragraph) have used constant specific heats. Some justification for use of whatever
formula is used for processing is therefore needed.

4. Davies-Jones (2009) presents a new formula that appears to be slightly more accurate than
the formulas of Bolton (1980), and he also optimized a large set of candidate expressions by
adjusting the coefficients (including those of Bolton) to match results from exact integrations
of the entropy formulas.5 His new formula (Davies-Jones, 2009, Eq. (6.5)) is

Θ
[DJ}
p = ΘDL exp

{
(L∗0−L∗1(TL−T0)+K2r)r

cpdTL

}
(13)

4Because Bolton used fits to adjust coefficients in this formula and in (9), coefficients should be adjusted to modern
values only with care. Davies-Jones (2009) has provided updated coefficients based on a similar but more extensive
procedure.

5However, he has also used an approximate equation from Bolton (1980) to represent the vapor pressure.
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where ΘDL is as defined by (12), L∗0 = 2.56313× 106J kg−1, L∗1 = 1754 J kg−1K−1, and
K2 = 1.137×106 J kg−1. The asterisks on L∗0 and L∗1 indicate that these are the result of his
optimization procedure and therefore depart slightly from the coefficients that would provide
the best match to the latent heat of vaporization.

5. The name of the variable should be changed to be consistent with usage recommendations
of the AMS Glossary.

6. It may be useful to include a new variable, the wet-equivalent potential temperature Θq, in
the data files. This is easier to calculate and less controversial than Θp, and it enters analyses
that have become widely used like the analyses of Paluch (1978).

Perhaps arguing against change is that, as long as we state clearly what the basis for the calculation
is, users are always able to calculate a different variable of their choice from the basic measure-
ments that are in the data set, so the variable in the data files does not constrain users. It may be
preferable to retain the current equation or make small changes to represent the best values in the
Bolton (1980) paper, rather than make a change, because use of the Bolton formulas has become
the common convention. Changing to the higher-accuracy version from Bolton (1980) or to the
Davies-Jones (2009) formula, however, would improve the accuracy of the representation of an
entropy-equivalent potential temperature.

Analysis

The desired relationship between entropy and Θq is ds = cptd lnΘq where cpt = cpd + rtcw. The
integral of this relationship involves an integration constant, which can be selected so that s is
relative to a state with T = 1K, r = 0, rw = 0, and pd = p0where p0 is the reference pressure,
1000 hPa. In the case where the specific heats are constant (but LV still varies in accord with the
Kirchhoff equation), the equation for the wet-equivalent potential temperature is

Θq = T (
p0

pd
)Rd/cpt exp

{
Lvr
cptT

}(
e

es(T )

)−rRw/cpt

(14)

where the last term, not included in (1) but unity for a saturated parcel, arises in case of a sub-
saturated parcel (below its LCL). (See the derivation in Emanuel, 1994, leading to his equation
(4.5.11).)

In the case of Θp, the result is not integrable even with constant specific heats because, with neglect
of the heat capacity of the water carried with the parcel, the replacement for cpt is c†

pt = cpd + rcw
and this depends on r, unlike cpt which is a constant. This is the reason that various approximate
formulas have been developed to represent Θp, including those of Bolton (1980) and Davies-Jones
(2009). The desired relationship of Θp to entropy is dsd = Cpdd lnΘp for the dry air only.
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Despite this advantage of Θq, it has the disadvantage that it cannot be plotted on a thermodynamic
diagram because it does not depend uniquely on T and p as do the conventional definition of po-
tential temperature (Θ) and pseudo-adiabatic equivalent potential temperature (which is a unique
function of T and p along saturated adiabats because the condensed water is removed so the de-
pendence on history, which would lead to variable liquid water content in the case of Θq, is lost).

The question to be addressed here is this: To what extent do relationships based on various equa-
tions for Θp and Θq depart from the representation of the entropy that arises from direct integration
of (3) relative to the reference state? This can be addressed by evaluating the extent to which con-
stant values of Θp or Θq represent true pseudoadiabats or wet adiabats during vertical motion of
air parcels. Davies-Jones (2009) has addressed this question for the Bolton formulas, a new alter-
native he proposed, and some others. However, two considerations not discussed there are relevant
to RAF applications:

• What is the effect of introduction of the Murphy and Koop (2005) representation of equilibrium
water vapor pressure? This will result in small shifts in results but should not affect the anal-
ysis of accuracy as presented by Davies-Jones (2009) because the formulas have vapor pres-
sure as an input. That analysis considers adjustment of coefficients in the formulas to com-
pensate for factors like the variation in latent heat with temperature, and those coefficients
have been minimized by comparison to numerical integrations that use old representations
of vapor pressure, but this does not seem likely to have much effect on the results because
the vapor-pressure formula used is close to the revised form presented by Murphy and Koop
(2005) and would enter both the parametrized formula and the exact integration.

• What is the effect of temperature dependence of the specific heats, esp. that of supercooled
water? The temperature dependence of the specific heats is neglected, both in the parametrized
formulas and in the exact integration as done by Davies-Jones, Bolton, and others. However,
the vapor-pressure formulas offered by Murphy and Koop (2005) are based on a represen-
tation of the specific heat of supercooled water that has significant variation, of order 50%
overall. This applies to the wet-equivalent potential temperature as well as the pseudo-
adiabatic equivalent potential temperature.

One approach to both questions is to integrate dT = (dT/d pd)d pd using the exact relationship (8)
and compare the result to that obtained from the formulas that were obtained with constant specific
heats. For example, consider a case where the temperature and dry-air pressure are T1 and pd,1
and the parcel is saturated. One can obtain the temperature at a low pressure pd,2 (e.g., 100 hPa)
by evaluating the appropriate formula for Θq or Θp, then inverting that formula to obtain the tem-
perature at pd,2 that gives the same corresponding equivalent potential temperature. Alternately,
one can integrate (8) to obtain the same temperature. If the temperature dependence of the specific
heats is included in the latter integration, the difference between results will provide a measure of
the error in equivalent potential temperature obtained from the formula used for its evaluation.6

6It will be useful to evaluate the formula used for the LCL also, because this will also be affected by the variation
in specific heats and by the change in representation of the equilibrium vapor pressure; this has not been included here
yet.
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To do this, the temperature dependence of the specific heats must be represented. The data in the
Appendix to this memo specify the data available. The most important variation is that of the
specific heat of liquid water (including in the supercooled region), which varies quite significantly
(more than 50%) in the supercooled region. Because the water vapor pressure becomes quite
low for substantial supercooling, it is not clear that even this very large variation has a significant
effect, but this is likely to be the dominant term causing a departure from constant-cp formulas. The
specific heat of dry air, in contrast, varies little (less than 0.1% from -50◦C to +40◦C, and less than
0.4% from -100 to +60◦C), so that variation will be neglected here. The specific heat of water vapor
does not enter the formulas for pseudo-adiabatic or wet equivalent potential temperature, but it does
enter indirectly through the Kirchhoff equation (7), which relates the temperature dependence of Lv
to the difference between the specific heats of water vapor and liquid water. There are significant
discrepancies among values listed in the Appendix, but for this study I have used the table in
Wagner and Pruss with quadratic extrapolation into the region below 0:

cpv = 1.932468−1.343977×10−3T +4.275412×10−6T 2 (15)

For example, consider an LCL at T1 = (10 + 273.15)K and pd,1 = 750 hPa. Formula (1) gives
Θq = 335.47K, and formula (13) gives Θp = 338.93K.7 At pd,2 = 100 hPa, inversion of these
formulas give the respective temperatures 178.69 K and 175.66 K. For comparison, integrations
from point 1 to point 2 using (8) or the analog with c†

pt = cpd + rcw give the respective values
178.71 K and 175.69 K, both quite close to the values obtained by the respective equations.8

The following table gives these and a few more values, where Tq and Tp are the temperatures deter-
mined at the final pressure p2 from inversion of the formulas for Θq and Θp, and the corresponding
primed quantities are the temperatures determined by numerical integration that incorporates the
variation in specific heat.:

T [◦C] p [hPa] final p2 [hPa] Tq[K] T ′
q[K] Tp[K] T ′

p[K]
25 850 100 206.50 207.69 200.73 200.76
15 750 100 189.34 189.73 185.39 185.42
10 750 100 178.69 178.71 175.66 175.69
0 700 100 167.05 166.90 165.39 165.41

-10 600 100 163.54 163.44 162.68 162.70
25 850 300 222.59 222.69 222.27 222.29
10 750 300 239.43 239.46 238.52 238.51
0 700 300 226.46 226.59 225.82 225.84

Although the evaluation is not exhaustive, it appears to support these conclusions:

7These values are obtained with the Davies-Jones (2009) values of cpd = 1005.7 J kg−1K−1, cpv = 1875 J kg−1K−1,
and Lv = L0 +L1(T −T0) where L0 = 2.501×106J kg−1 and L1 = 2370 Jkg−1K−1.

8The integrations with constant specific heat consistently produced agreement with the formulas to an accuracy
of 0.01 K. This provides a check on the accuracy of the integration, but also shows consistency with the optimized
coefficients of Davies-Jones (2009), because the integration is independent of the coefficients he determined.



Aircraft Algorithm Note re: Equivalent Potential Temperature
3 January 2011
Page 9

1. Comparison of the last two columns suggests that the formula (13) represents the pseudo-
adiabats with good accuracy, even when they are calculated using the strong variations in the
specific heat of liquid water estimated by Murphy and Koop (2005) and using the Murphy
and Koop vapor pressures.

2. Even for the reversible adiabatic equation (1), there is only minor deviation from true adi-
abats when the temperature variation of the specific heats is represented accurately. The
variations from the temperature on a true wet adiabat are only a few tenths degree in the
worst cases. One might expect more variation, because high liquid water content can be
carried upward where the variation in specific heat of liquid water can affect the answer.
These are unrealistic situations, however, because high liquid water content cannot exist at
temperatures as low as the extremes of this integration.

One additional issue is the representation in cases where the parcel is unsaturated. Equation (13)
represents the pseudo-adiabatic equivalent potential temperature in terms that involve the saturation
temperature, the temperature at the LCL. To determine this, one can use (10) from Bolton (1980),
include the additional term in the entropy equation as derived by Emanuel (1994),9 or find the
LCL from conservation of the mixing ratio and of the moist potential temperature during adiabatic
expansion. If the specific heats are functions of temperature, it is not clear what choice to make.

Emanuel (1994) also gives an equation for the saturation temperature, his Eq. (4.6.21):

− ln
e

es(T )
=

(
cpd

Rd

(
1+ rcpv/cpd

)
(1+ r/ε)

+
cw− cpv

Rw

)
ln

TL

T
+
[

LV (T0)
Rw

](
1
TL

− 1
T

)

(with T0 = 273.15K), which can be solved numerically for TL. Alternately, one can determine
the temperature of the rising parcel from the conserved values of mixing ratio and moist potential
temperature, iteratively evaluated for the temperature that gives the equilibrium vapor pressure.

To evaluate how well the Bolton formula for TL represents exact values, a set of calculations were
performed where the LCL was determined by lifting the parcel adiabatically and using the con-
servation of moist potential temperature and mixing ratio during adiabatic ascent to determine the
LCL numerically. The approach was as follows:

1. Determine the appropriate values of the molecular weight and specific heat of moist air using
these equations:

M∗ =
1+ r

1+ r/ε
Md

9i.e., multiply the formula for pseudo-adiabatic equivalent potential temperature by(
e

es(T )

)−rRw/c′pt
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c∗p = cpd

(
1

1+ r

)
+ cpv

r
1+ r

= cpd
1+ rcpv/cpd

1+ r

R∗

c∗p
=

Rd

cpd

(
1+ r/ε

1+ rcpv/cpd

)
(16)

2. Find the potential temperature for the moist mixture from

Θm = T
(

1000
p

)R∗/c∗p
(17)

3. Use conservation of Θm and the mixing ratio r to find the pressure at which the temperature
deduced from (XXX) gives a saturation vapor pressure equal to the vapor pressure deduced
from e = rp/(r + ε), the latter as required for a constant mixing ratio. Specifically, this was
done by minimizing the following function of pressure:

f (p) = es(T (p))− rp
r + ε

where T(p) is the temperature determined from (XXX) above.

A short list of checks, shown in the following table, suggested that the Bolton formula for TL
performs well, giving values within 0.05 K of those determined by the numerical solution. Because
this is a published equation in common use, there does not appear to be any need for a change.

Temperature [◦C] Pressure [hPa] RH [%] (10) – Bolton Numerical
20 850 50 280.074 280.067
25 900 30 275.42 275.43
25 900 20 290.94 290.92
10 700 80 279.14 279.14
10 700 50 271.12 271.24
10 700 10 247.54 247.58
0 600 80 269.45 269.48
0 600 40 258.79 258.84
0 600 20 249.13 249.18

Recommendations:

1. Change to (13), and change the variable name to “pseudo-adiabatic equivalent potential tem-
perature”. Use (10) to determine the saturation temperature TL. (There will need to be some
protection against the relative humidity exceeding 100%; if it does, set it to 100% for this
calculation.)
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2. Add a new variable “wet equivalent potential temperature” and use (14) for its evaluation. A
caution should be included to warn users that there may be inaccuracies in Θq of a few tenths
kelvin that arise from variation and uncertainty in the specific heat of supercooled water.

3. It might be useful to consider adding still another potential temperature that refers to ice-
phase processes, because that is more commonly the case at GV flight altitude. However,
that is a project for another time.10

10An approach similar to that of Davies-Jones (2009) would be appropriate, where coefficients in an equation of the
form he uses are adjusted to match exact-integration values over a broad range of conditions.
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Appendix: Values Used For Specific Heats

For dry air, the following values come from the “Engineering Toolbox” and are reasonable in com-
parison to sparsely placed values in the CRC Handbook. They suggest that there is no significant
variation in the specific heat of dry air over the range of temperatures encountered by RAF research
aircraft.

T (◦C) cp[kJ kg−1K−1]
-150 1.026
-100 1.009
-50 1.005
0 1.005
20 1.005
40 1.005
60 1.009

For water vapor, the “Engineering Toolbox” provides the following data (in conflict with the data
from Wagner and Pruss (2002) presented later, and also with the Penn State summary of physical
constants which gives a single value, 1.952):

T [K] cp[kJ kg−1K−1]
175 1.850
200 1.851
225 1.852
250 1.855
275 1.859
300 1.871
325 1.880

For liquid water at 1000 hPa (Mw = 18.01528),

T (◦C) cp[kJ kg−1K−1]
0 4.2176
10 4.1921
20 4.1818
30 4.1784
40 4.1785
50 4.1806
60 4.1843

For supercooled water, Murphy and Koop (2005) presented their estimate for the specific heat in
their Fig. 6, and they referenced Wagner and Pruss (2002) for the specific heat of water at temper-
ature greater than 0◦C. Tables were constructed from these two sources, giving the values below
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(which will here be used in preference to those immediately above, from the CRC Handbook) as
well as reference values for the specific heat of water vapor. For liquid water, the following plot
represents the tabulated data. This figure and the following table show that there is significant
variation in the specific heat of liquid water, especially in the supercooled-water region, and this is
likely to affect the calculation of equivalent potential temperatures (whether carried with the parcel
or not, because of the link between the specific heat of liquid water and the variation in the latent
heat of vaporization via the Kirchhoff equation).
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T [K] cw [kJ kg−1K−1 cpv [kJ kg−1K−1

200 2.9873
202 3.2597
204 3.5615
206 3.8970
208 4.2637
210 4.6348
212 5.0286
214 5.4508
216 5.8732
218 6.2855
220 6.6228
222 6.8251
224 6.9813
226 7.0099
228 6.8818
230 6.5527
232 6.1004
234 5.7058
236 5.3838
238 5.1507
240 4.9515
242 4.7998
244 4.6721
246 4.5790
248 4.5002
250 4.4397
252 4.3831
254 4.3457
256 4.3113
258 4.2808
260 4.2708
262 4.2538
264 4.2452
266 4.2210
268 4.2191
270 4.2104
272 4.2087



Aircraft Algorithm Note re: Equivalent Potential Temperature
3 January 2011
Page 15

T [K] cw [kJ kg−1K−1 cpv [kJ kg−1K−1

274 4.2171 1.8852
276 4.2110 1.8872
278 4.2058 1.8893
280 4.2014 1.8913
282 4.1975 1.8935
284 4.1942 1.8956
286 4.1914 1.8978
288 4.1890 1.9000
290 4.1869 1.9023
292 4.1852 1.9046
294 4.1838 1.9069
296 4.1826 1.9092
298 4.1817 1.9116
300 4.1809 1.9141
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