

JACOBS SCHOOL OF ENGINEERING Department of Computer Science and Engineering

A Theory of Scientific Programming Efficacy Elizaveta Pertseva, Melinda Chang, Ulia Zaman, Michael Coblenz

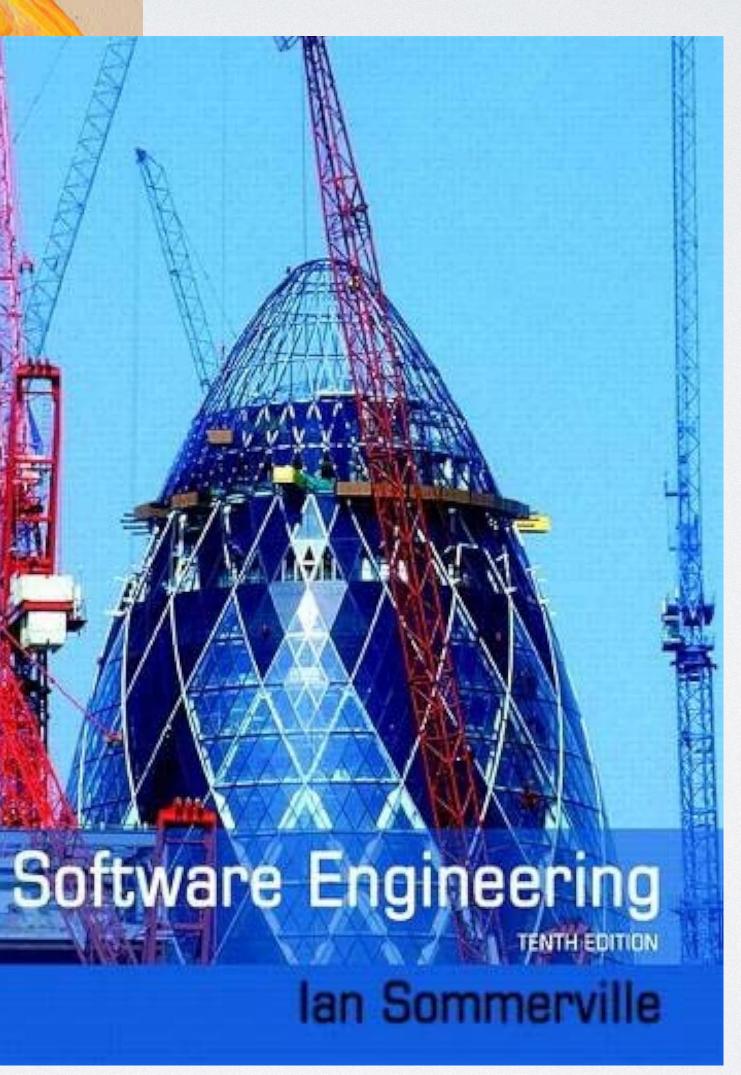
Our Perspective

- Programming languages
- Software engineering
- Human-computer interaction
- Overall research question: how can we help people who write software be more effective?

Programming Languages Researchers Care About...

- Proving that programs are correct (what does "correct" mean?)
- Proving that programs don't have specific classes of bugs
- Making it easy to reason about programs
- Making programs run efficiently (faster, less energy)

software engineering FOURTH EDITION


Frank Tsui Orlando Karam Barbara Bernal

software enginee FOURTH EDITI

ESSENTIALS

software enginee FOURTH EDITI

ESSENTIALS O

DAVID FARLEY

MODERN SOFTWARE ENGINEERING

Software Engineer

lan Sommer

Doing What Works to Build Better Software Faster

Foreword by TRISHA GEE

- Software engineers:
 - have extensive training in programming
 - care about software

Assumptions of SE Research

work in large teams to build large artifacts over a long time

For Scientists...

- Software is secondary (to results, papers)
- Programming background is inconsistent and potentially minimal
- Many small (< 10 KLOC) projects
 - that may leverage earlier projects

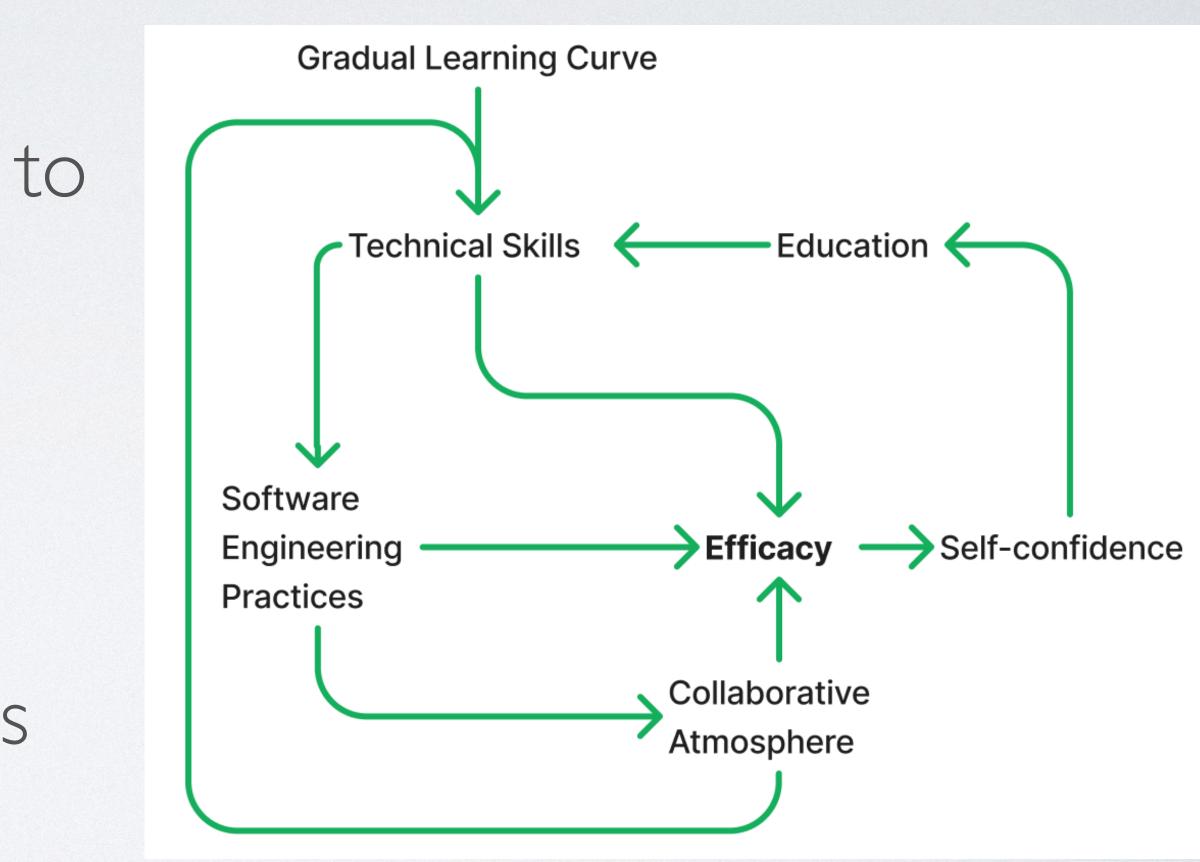
What Practices Lead to Effective Scientific Software Engineering?

- Interviewed 25 scientists about practices, challenges
- Used techniques from grounded theory to analyze transcripts
 - Qualitative research: goal is to hypothesize a theory, identify opportunities

Participants

20 scientists

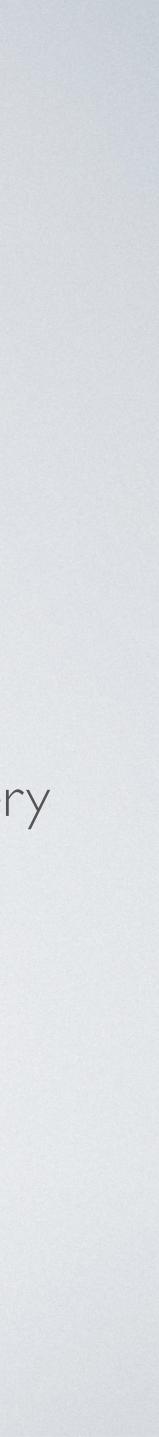
• 5 support staff

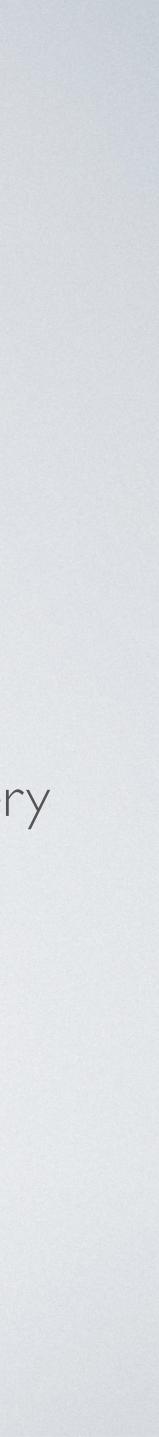

#	Field	Position	Education	Yrs.
P1	Oceanogr.	Post Doc	PhD Oceanogr.	8
P2	Oceanogr.	Proj. Scientist	PhD Oceanogr.	20
P3	Oceanogr.	Professor	PhD Oceanogr.	-
P4	Oceanogr.	PhD Student	BS Atmos. Sci.	5
P5	Econ.	Researcher	PhD Economics	22
P6	Oceanogr.	Researcher	PhD Oceanogr.	-
P7	Math.	Researcher	PhD Math.	10
P8*	Geosciences	Engineer	MS DSE	25
P9	Physics	Professor	PhD Physics	30
P10	Linguistics	PhD Student	MS Linguistics	-
P11	Climate Sci.	Post Doc	PhD Atmos. Sci.	-
P12*	HPC	User Support	PhD Aerosp. Eng.	-
P13*	HPC, Clim. Sci.	Research Staff	PhD Math.	45
P14	Bioinform.	Professor	PhD Comp. Sci.	20
P15	Clim. Sci.	PhD Student	BS Physics	5
P16	Oceanogr.	Lab. Director	PhD Physics	-
P17	Oceanogr.	PhD Student	BA Physics	4
P18	Oceanogr.	MS Student	BS Eng. Physics	6
P19	Econ.	Pre Doc	BS Econom.	3
P20	Econ.	PhD Candidate	BS Economics	-
P21	Bioinform.	PhD Student	BS Biology	3
P22	Glob. Policy.	Post Doc	PhD Atmos. Sci.	-
P23*	Research IT	SI Engineer	PhD Physics	20
P24	Oceanogr.	Post Doc	PhD Earth Sci.	11
P25*	Data Curation	Librarian	MLIS	7

Results

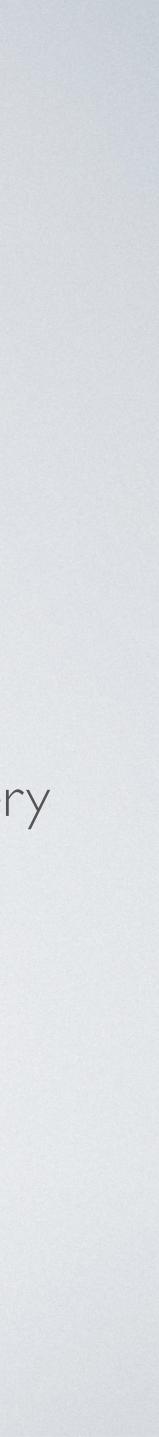
- Identified six factors that relate to efficacy
- Positive feedback loop: Selfconfidence inspires more education, which promotes skills

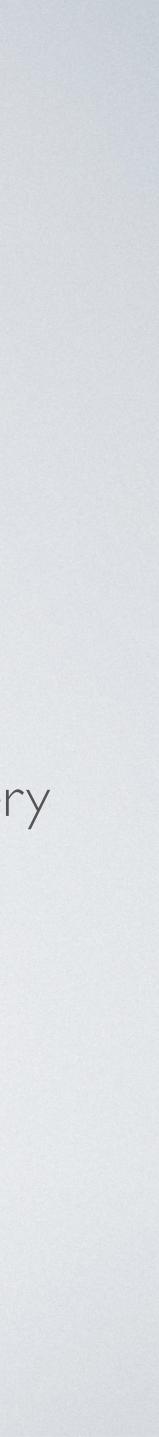
Efficacy



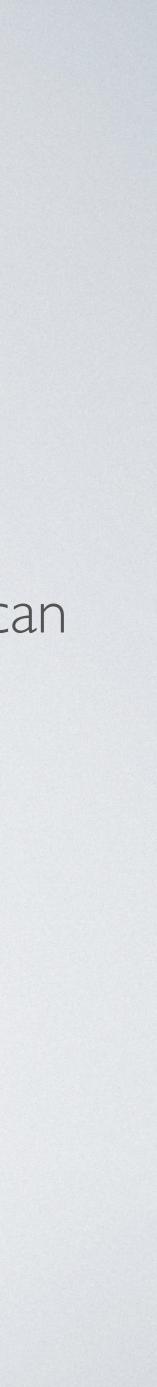

• Testing often ad hoc and visualization-based (e.g., 9 tried unit tests but most found it futile)

- Testing often ad hoc and visualization-based (e.g., 9 tried unit tests but most found it futile)
- Version control used primarily for collaboration (sometimes with ad hoc methods)

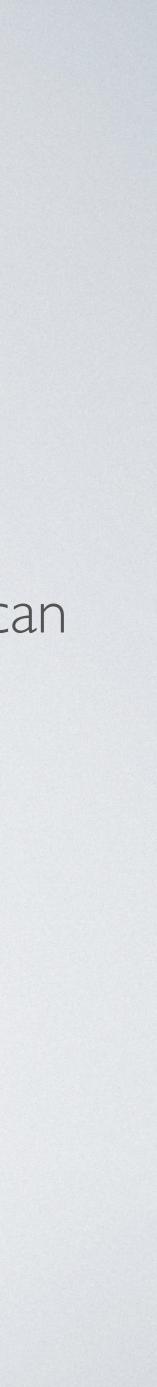

- Testing often ad hoc and visualization-based (e.g., 9 tried unit tests but most found it futile)
- Version control used primarily for collaboration (sometimes with ad hoc methods)
 - time, it can get quite annoying."


- Testing often ad hoc and visualization-based (e.g., 9 tried unit tests but most found it futile)
- Version control used primarily for collaboration (sometimes with ad hoc methods)
 - time, it can get quite annoying."
- No structured processes (e.g. agile)

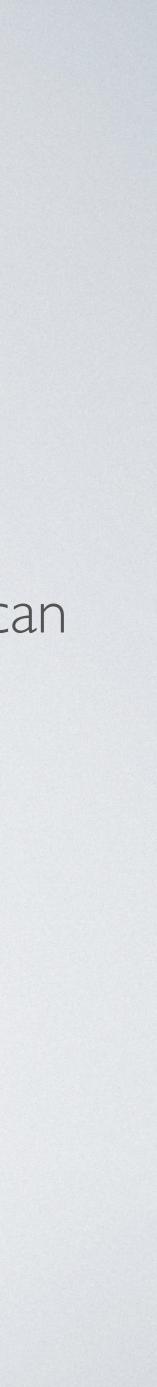
- Testing often ad hoc and visualization-based (e.g., 9 tried unit tests but most found it futile)
- Version control used primarily for collaboration (sometimes with ad hoc methods)
 - time, it can get quite annoying."
- No structured processes (e.g. agile)
- 2/20 scientists in ongoing collaboration with multiple programmers


- Testing often ad hoc and visualization-based (e.g., 9 tried unit tests but most found it futile)
- Version control used primarily for collaboration (sometimes with ad hoc methods)
 - time, it can get quite annoying."
- No structured processes (e.g. agile)
- 2/20 scientists in ongoing collaboration with multiple programmers
- Major opportunities here!

6/20 worked on solo + advisor projects

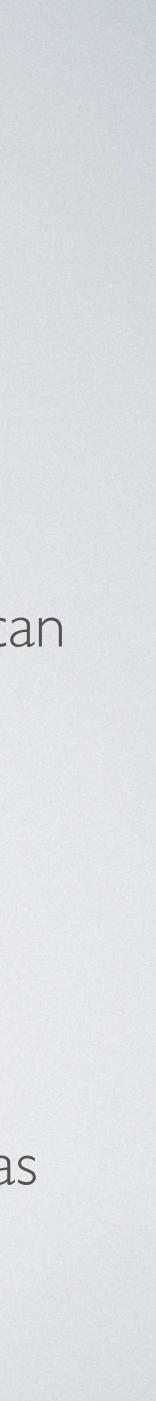

- 6/20 worked on solo + advisor projects

• "I had asked [my advisor] 'Can I do Python?' and he was like, 'You can do whatever, but I can only help you in MATLAB.' I'm gonna need help. So yeah, I decided to do it in MATLAB."


- 6/20 worked on solo + advisor projects
- Reliance on tech support (e.g. at supercomputing centers)

• "I had asked [my advisor] 'Can I do Python?' and he was like, 'You can do whatever, but I can only help you in MATLAB.' I'm gonna need help. So yeah, I decided to do it in MATLAB."

- 6/20 worked on solo + advisor projects
- Reliance on tech support (e.g. at supercomputing centers)
 - But tech support tempers advice according to scientists' skills •


• "I had asked [my advisor] 'Can I do Python?' and he was like, 'You can do whatever, but I can only help you in MATLAB.' I'm gonna need help. So yeah, I decided to do it in MATLAB."

- 6/20 worked on solo + advisor projects
- Reliance on tech support (e.g. at supercomputing centers)
 - But tech support tempers advice according to scientists' skills •
- software engineers

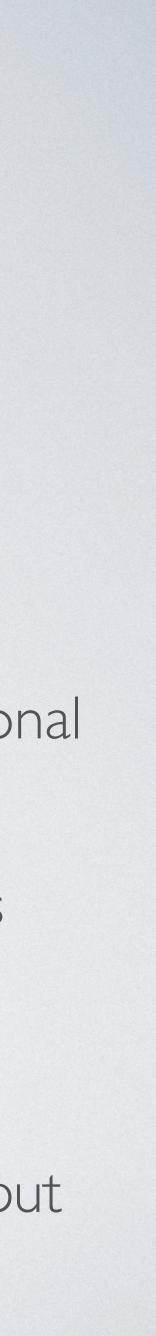
• "I had asked [my advisor] 'Can I do Python?' and he was like, 'You can do whatever, but I can only help you in MATLAB.' I'm gonna need help. So yeah, I decided to do it in MATLAB."

• Sense of belonging to community is important for engagement, but scientists don't identify as

 Motivation theory: if the goal is performance (not intellectual fulfillment), self-confidence motivates learning

- Motivation theory: if the goal is performance (not intellectual fulfillment), self-confidence motivates learning
- Failures may de-motivate learning

- Motivation theory: if the goal is performance (not intellectual fulfillment), self-confidence motivates learning
- Failures may de-motivate learning
- P21: bash is 'little bit stressful sometimes ... I accidentally used a recursive chmod on my personal computer, and I locked myself out of it ... it has so much power over your actual system."


- Motivation theory: if the goal is performance (not intellectual fulfillment), self-confidence motivates learning
- Failures may de-motivate learning
- P21: bash is 'little bit stressful sometimes ... I accidentally used a recursive chmod on my personal computer, and I locked myself out of it ... it has so much power over your actual system."
 - Currently waits for job to finish rather than learning parallelization. "At first, I thought it was going to be really easy ... I haven't used it yet, but I know it exists and will be helpful."

- Motivation theory: if the goal is performance (not intellectual fulfillment), self-confidence motivates learning
- Failures may de-motivate learning
- P21: bash is 'little bit stressful sometimes ... I accidentally used a recursive chmod on my personal computer, and I locked myself out of it ... it has so much power over your actual system."
 - Currently waits for job to finish rather than learning parallelization. "At first, I thought it was going to be really easy ... I haven't used it yet, but I know it exists and will be helpful."
- 17/20 reported apprehension or anxiety about programming

- Motivation theory: if the goal is performance (not intellectual fulfillment), self-confidence motivates learning
- Failures may de-motivate learning
- P21: bash is "little bit stressful sometimes ... I accidentally used a recursive chmod on my personal computer, and I locked myself out of it ... it has so much power over your actual system."
 - Currently waits for job to finish rather than learning parallelization. "At first, I thought it was going to be really easy ... I haven't used it yet, but I know it exists and will be helpful."
- I7/20 reported apprehension or anxiety about programming
- I 8/20 reported guilt over not following SE guidelines. "Oh I probably should be doing that . . . but I haven't ..had a reason to do [it]."

Education

Education

• 15/20: lack of education is a primary problem

Education

- 15/20: lack of education is a primary problem
 - 10 of these had taken programming classes, but they weren't enough

Education

- 15/20: lack of education is a primary problem
 - 10 of these had taken programming classes, but they weren't enough
- Current approaches: workshops (7/20), e.g. Software Carpentry

Education

- I 5/20: lack of education is a primary problem
 - 10 of these had taken programming classes, but they weren't enough
- Current approaches: workshops (7/20), e.g. Software Carpentry
- it's doing on the back end...what is Anaconda?"

• But workshops are too shallow: "PIO explained, "[1] want someone to actually explain to me fundamentally, what Python is and how it works...in terms of what an environment is, and what

Education

- 15/20: lack of education is a primary problem
 - 10 of these had taken programming classes, but they weren't enough
- Current approaches: workshops (7/20), e.g. Software Carpentry
- it's doing on the back end...what is Anaconda?"
- courses aren't a good match)

• But workshops are too shallow: "PIO explained, "[1] want someone to actually explain to me fundamentally, what Python is and how it works...in terms of what an environment is, and what

Low self-confidence may lead to desire for more formal education, which is unavailable (CS

• Besides domain-specific skills (e.g. libraries)...

- Besides domain-specific skills (e.g. libraries)... •
- Data management (access and format problems)

- Besides domain-specific skills (e.g. libraries)... •
- Data management (access and format problems)
- Unpredictable memory, storage requirements

- Besides domain-specific skills (e.g. libraries)...
- Data management (access and format problems)
- Unpredictable memory, storage requirements
- Heavy use of visualization libraries: "our histogram libraries are lovingly created...a little bit too much religion is involved in creating histogram libraries."

• Want: small effort to result in small rewards

- Want: small effort to result in small rewards
- In reality: small effort is not rewarded; large efforts result in large rewards

- Want: small effort to result in small rewards
- In reality: small effort is not rewarded; large efforts result in large rewards
- GUI to CLI

- Want: small effort to result in small rewards
- In reality: small effort is not rewarded; large efforts result in large rewards
- GUI to CLI
- Notebooks to traditional programming environments

- Want: small effort to result in small rewards
- In reality: small effort is not rewarded; large efforts result in large rewards
- GUI to CLI
- Notebooks to traditional programming environments
- Local to HPC

- Want: small effort to result in small rewards
- In reality: small effort is not rewarded; large efforts result in large rewards
- GUI to CLI
- Notebooks to traditional programming environments
- Local to HPC
- In contrast: Resnick's low floors, high ceilings, wide walls

small-scale analysis to complex software development

AVision

Develop languages and tools that afford a gradual progression from

- small-scale analysis to complex software development

Develop languages and tools that afford a gradual progression from

Develop and validate scientific software engineering practices and tools

- small-scale analysis to complex software development
- Facilitate gradual learning via low-commitment formal education

• Develop languages and tools that afford a gradual progression from

Develop and validate scientific software engineering practices and tools

- small-scale analysis to complex software development
- Facilitate gradual learning via low-commitment formal education
 - (monolithic)

• Develop languages and tools that afford a gradual progression from

• Develop and validate scientific software engineering practices and tools

Compare MOOCs (many small videos) to semester-long courses

PL Ideas To Consider

- Is functional programming a good match?
 - Can we make a functional PL that "looks" like Python?
 - Closer match to papers (math)?
- Auto-parallelization (for relevant programs)
- Automatic resource estimation (memory, storage, CPU)
- High performance (no GC or rare GC)

Conclusion

- Appropriating SE practices & tools has led to guilt and challenges engaging with the SE community
- But these practices may be inappropriate for many scientists
- scientists much more effective

Tool and practice designs centered around gradual adoption may make

Conclusion

- Appropriating SE practices & tools has led to guilt and challenges engaging with the SE community
- But these practices may be inappropriate for many scientists
- scientists much more effective

Michael Coblenz mcoblenz@ucsd.edu

Tool and practice designs centered around gradual adoption may make