
A Theory of Scientific Programming Efficacy
Elizaveta Pertseva, Melinda Chang, Ulia Zaman, Michael Coblenz

Our Perspective

• Programming languages

• Software engineering

• Human-computer interaction

• Overall research question: how can we help people who write
software be more effective?

Programming Languages Researchers Care
About…

• Proving that programs are correct (what does "correct" mean?)

• Proving that programs don't have specific classes of bugs

• Making it easy to reason about programs

• Making programs run efficiently (faster, less energy)

What Should We Tell Scientists About How
To Engineer Software?

What Should We Tell Scientists About How
To Engineer Software?

What Should We Tell Scientists About How
To Engineer Software?

What Should We Tell Scientists About How
To Engineer Software?

Assumptions of SE Research

• Software engineers:

• have extensive training in programming

• care about software

• work in large teams to build large artifacts over a long time

For Scientists…

• Software is secondary (to results, papers)

• Programming background is inconsistent and potentially minimal

• Many small (< 10 KLOC) projects

• that may leverage earlier projects

What Practices Lead to Effective Scientific
Software Engineering?

• Interviewed 25 scientists about practices, challenges

• Used techniques from grounded theory to analyze transcripts

• Qualitative research: goal is to hypothesize a theory, identify
opportunities

Participants233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

A Theory of Scientific Programming E�icacy ICSE 2024, April 2024, Lisbon, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Kellogg et al. [21] suggest that the challenges faced by the scienti�c
computing community are as much social as they are technical.

3 METHOD
We recruited scientists who wrote and maintained software as part
of their work for semi-structured video interviews over Zoom and
in person that lasted up to an hour and a half. We identi�ed possible
participants by studying our institutional directory and snowball
sampling (referrals from other participants). We asked questions
about how they used programming for their research, what tools
they used in their programming projects, and what challenges they
faced when writing software. We also asked them about techniques
they use to assess correctness and about general software engineer-
ing processes. As a semi-structured interview, interviewers adapted
their questions to focus on areas that elicited relevant insights. We
recorded the interviews and transcribed them with the Otter.ai
transcription service. Our ethics board approved our study, and
our participants signed consent forms. Our participants agreed to
participate on a volunteer basis.

Our initial focus on climate science led us to recruit scientists
who focused on oceanography and climate science. However, we
wanted to assess to what extent our observations might generalize
to other kinds of scientists, so we recruited more broadly from eco-
nomics, physics, linguistics, and bioinformatics. We also recruited
computing support sta� with technical expertise who could o�er
another perspective on the scientists’ experiences.

We adapted techniques from constructivist grounded theory [6]
to analyze the interviews. We open-coded the transcripts and then
grouped the codes to form categories. Then, we compared categories
and cases to each other to identify relationships, forming a theory
of how most salient categories related to each other. The paper
supplement includes our complete interview guide and a list of all
codes that we used. To maintain our participants’ anonymity, we
cannot publish the interview transcripts.

4 RESULTS AND DISCUSSION
We recruited# = 25 participants, shown in table 1 with anonymous
identi�ers P1, P2, etc. Twenty participants worked as scientists, and
�ve worked as computing support sta�. Five of the participants
identi�ed as female and twenty as male. Eleven participants came
fromOceanography and Climate Science, re�ecting our initial focus.
Fifteen participants held Ph.D. degrees.

In the sections below, we explain each component of our theory
in more detail. For each component, we explain how its presence
a�ects other components and overall development e�cacy.

4.1 Software Engineering Practices
4.1.1 Results. As scienti�c computing practices have evolved, par-
ticipants have gradually adopted software engineering practices
from the software industry that they felt led to improved collab-
oration and e�cacy. P7 explained, “We’re starting to adopt much
more of the practices that are being performed in industry. . . ver-
sion control. . . test-driven development, much more emphasis on
modular code design, standard APIs. And these processes are really
maturing the �eld in a positive way.”

Table 1: Participants and years of experience programming.
*indicates computing support sta�. Some participants did
not tell us how much experience they had.

Field Position Education Yrs.

P1 Oceanogr. Post Doc PhD Oceanogr. 8
P2 Oceanogr. Proj. Scientist PhD Oceanogr. 20
P3 Oceanogr. Professor PhD Oceanogr. -
P4 Oceanogr. PhD Student BS Atmos. Sci. 5
P5 Econ. Researcher PhD Economics 22
P6 Oceanogr. Researcher PhD Oceanogr. -
P7 Math. Researcher PhD Math. 10
P8* Geosciences Engineer MS DSE 25
P9 Physics Professor PhD Physics 30
P10 Linguistics PhD Student MS Linguistics -
P11 Climate Sci. Post Doc PhD Atmos. Sci. -
P12* HPC User Support PhD Aerosp. Eng. -
P13* HPC, Clim. Sci. Research Sta� PhD Math. 45
P14 Bioinform. Professor PhD Comp. Sci. 20
P15 Clim. Sci. PhD Student BS Physics 5
P16 Oceanogr. Lab. Director PhD Physics -
P17 Oceanogr. PhD Student BA Physics 4
P18 Oceanogr. MS Student BS Eng. Physics 6
P19 Econ. Pre Doc BS Econom. 3
P20 Econ. PhD Candidate BS Economics -
P21 Bioinform. PhD Student BS Biology 3
P22 Glob. Policy. Post Doc PhD Atmos. Sci. -
P23* Research IT SI Engineer PhD Physics 20
P24 Oceanogr. Post Doc PhD Earth Sci. 11
P25* Data Curation Librarian MLIS 7

Some practices and tools, however, were not appropriate for
their contexts. Testing frameworks are not designed to align with
scientists’ work�ows; version control systems have complicated
semantics, unfamiliar interfaces, and delayed return on investment;
software design principles can be hard to follow when scientists do
not plan their designs in advance. Sometimes, scientists invented
their own practices to �ll the gap, as in makeshift version control
systems and testing through manual analysis of visualizations.

Reuse and Maintenance. Scientists reported re-using code from
libraries and published papers but mentioned that they were con-
cerned about its impact on the accuracy of their results. P6 ex-
plained: “One class of bug [that] most scares me [is] I see a lot of
academic people using. . . code as a black box . . . you don’t know
what were the constraints and assumptions of the person who
wrote the code. . . there is no formal training. So there is no way to
validate to check if it’s going as expected.” P17 elaborated that due
to ‘ambiguity in science’ and noise in experiments he can’t use data
to check the accuracy of legacy code: “I’m trusting that it can get
interactions correctly . . .maybe it is overestimating things a bit.”

Other impediments to reuse include software that no longer
works: Scientists rely on a lot of libraries in their code [19], but
these libraries can introduce bugs with version updates or become
discontinued. P12 explained: “Often you’ll see the codes that they
developed �ve years ago don’t work — no one’s maintaining them.”

3

• 20 scientists

• 5 support staff

Results

Efficacy

• Identified six factors that relate to
efficacy

• Positive feedback loop: Self-
confidence inspires more
education, which promotes skills

SE Practices

SE Practices
• Testing often ad hoc and visualization-based (e.g., 9 tried unit tests but most found it futile)

SE Practices
• Testing often ad hoc and visualization-based (e.g., 9 tried unit tests but most found it futile)

• Version control used primarily for collaboration (sometimes with ad hoc methods)

SE Practices
• Testing often ad hoc and visualization-based (e.g., 9 tried unit tests but most found it futile)

• Version control used primarily for collaboration (sometimes with ad hoc methods)

• “Before starting to use version control. . . six months pass, and you realize that some analysis that
you have done before. . . [is] actually sort of useful, right? And then if you have to. . . rewrite it every
time, it can get quite annoying."

SE Practices
• Testing often ad hoc and visualization-based (e.g., 9 tried unit tests but most found it futile)

• Version control used primarily for collaboration (sometimes with ad hoc methods)

• “Before starting to use version control. . . six months pass, and you realize that some analysis that
you have done before. . . [is] actually sort of useful, right? And then if you have to. . . rewrite it every
time, it can get quite annoying."

• No structured processes (e.g. agile)

SE Practices
• Testing often ad hoc and visualization-based (e.g., 9 tried unit tests but most found it futile)

• Version control used primarily for collaboration (sometimes with ad hoc methods)

• “Before starting to use version control. . . six months pass, and you realize that some analysis that
you have done before. . . [is] actually sort of useful, right? And then if you have to. . . rewrite it every
time, it can get quite annoying."

• No structured processes (e.g. agile)

• 2/20 scientists in ongoing collaboration with multiple programmers

SE Practices
• Testing often ad hoc and visualization-based (e.g., 9 tried unit tests but most found it futile)

• Version control used primarily for collaboration (sometimes with ad hoc methods)

• “Before starting to use version control. . . six months pass, and you realize that some analysis that
you have done before. . . [is] actually sort of useful, right? And then if you have to. . . rewrite it every
time, it can get quite annoying."

• No structured processes (e.g. agile)

• 2/20 scientists in ongoing collaboration with multiple programmers

• Major opportunities here!

Collaborative Atmosphere

Collaborative Atmosphere

• 6/20 worked on solo + advisor projects

Collaborative Atmosphere

• 6/20 worked on solo + advisor projects

• "I had asked [my advisor] ‘Can I do Python?’ and he was like, ‘You can do whatever, but I can
only help you in MATLAB.’ I’m gonna need help. So yeah, I decided to do it in MATLAB."

Collaborative Atmosphere

• 6/20 worked on solo + advisor projects

• "I had asked [my advisor] ‘Can I do Python?’ and he was like, ‘You can do whatever, but I can
only help you in MATLAB.’ I’m gonna need help. So yeah, I decided to do it in MATLAB."

• Reliance on tech support (e.g. at supercomputing centers)

Collaborative Atmosphere

• 6/20 worked on solo + advisor projects

• "I had asked [my advisor] ‘Can I do Python?’ and he was like, ‘You can do whatever, but I can
only help you in MATLAB.’ I’m gonna need help. So yeah, I decided to do it in MATLAB."

• Reliance on tech support (e.g. at supercomputing centers)

• But tech support tempers advice according to scientists' skills

Collaborative Atmosphere

• 6/20 worked on solo + advisor projects

• "I had asked [my advisor] ‘Can I do Python?’ and he was like, ‘You can do whatever, but I can
only help you in MATLAB.’ I’m gonna need help. So yeah, I decided to do it in MATLAB."

• Reliance on tech support (e.g. at supercomputing centers)

• But tech support tempers advice according to scientists' skills

• Sense of belonging to community is important for engagement, but scientists don't identify as
software engineers

Self-Confidence

Self-Confidence
• Motivation theory: if the goal is performance (not intellectual fulfillment), self-confidence

motivates learning

Self-Confidence
• Motivation theory: if the goal is performance (not intellectual fulfillment), self-confidence

motivates learning
• Failures may de-motivate learning

Self-Confidence
• Motivation theory: if the goal is performance (not intellectual fulfillment), self-confidence

motivates learning
• Failures may de-motivate learning
• P21: bash is “little bit stressful sometimes . . . I accidentally used a recursive chmod on my personal

computer, and I locked myself out of it . . . it has so much power over your actual system.”

Self-Confidence
• Motivation theory: if the goal is performance (not intellectual fulfillment), self-confidence

motivates learning
• Failures may de-motivate learning
• P21: bash is “little bit stressful sometimes . . . I accidentally used a recursive chmod on my personal

computer, and I locked myself out of it . . . it has so much power over your actual system.”
• Currently waits for job to finish rather than learning parallelization. “At first, I thought it was

going to be really easy . . . I haven’t used it yet, but I know it exists and will be helpful.”

Self-Confidence
• Motivation theory: if the goal is performance (not intellectual fulfillment), self-confidence

motivates learning
• Failures may de-motivate learning
• P21: bash is “little bit stressful sometimes . . . I accidentally used a recursive chmod on my personal

computer, and I locked myself out of it . . . it has so much power over your actual system.”
• Currently waits for job to finish rather than learning parallelization. “At first, I thought it was

going to be really easy . . . I haven’t used it yet, but I know it exists and will be helpful.”
• 17/20 reported apprehension or anxiety about programming

Self-Confidence
• Motivation theory: if the goal is performance (not intellectual fulfillment), self-confidence

motivates learning
• Failures may de-motivate learning
• P21: bash is “little bit stressful sometimes . . . I accidentally used a recursive chmod on my personal

computer, and I locked myself out of it . . . it has so much power over your actual system.”
• Currently waits for job to finish rather than learning parallelization. “At first, I thought it was

going to be really easy . . . I haven’t used it yet, but I know it exists and will be helpful.”
• 17/20 reported apprehension or anxiety about programming
• 18/20 reported guilt over not following SE guidelines. "Oh I probably should be doing that . . . but

I haven’t 786 had a reason to do [it].”

Education

Education
• 15/20: lack of education is a primary problem

Education
• 15/20: lack of education is a primary problem

• 10 of these had taken programming classes, but they weren't enough

Education
• 15/20: lack of education is a primary problem

• 10 of these had taken programming classes, but they weren't enough

• Current approaches: workshops (7/20), e.g. Software Carpentry

Education
• 15/20: lack of education is a primary problem

• 10 of these had taken programming classes, but they weren't enough

• Current approaches: workshops (7/20), e.g. Software Carpentry

• But workshops are too shallow: "P10 explained, “[I] want someone to actually explain to me
fundamentally, what Python is and how it works…in terms of what an environment is, and what
it’s doing on the back end…what is Anaconda?"

Education
• 15/20: lack of education is a primary problem

• 10 of these had taken programming classes, but they weren't enough

• Current approaches: workshops (7/20), e.g. Software Carpentry

• But workshops are too shallow: "P10 explained, “[I] want someone to actually explain to me
fundamentally, what Python is and how it works…in terms of what an environment is, and what
it’s doing on the back end…what is Anaconda?"

• Low self-confidence may lead to desire for more formal education, which is unavailable (CS
courses aren't a good match)

Technical Skills

Technical Skills
• Besides domain-specific skills (e.g. libraries)…

Technical Skills
• Besides domain-specific skills (e.g. libraries)…

• Data management (access and format problems)

Technical Skills
• Besides domain-specific skills (e.g. libraries)…

• Data management (access and format problems)

• Unpredictable memory, storage requirements

Technical Skills
• Besides domain-specific skills (e.g. libraries)…

• Data management (access and format problems)

• Unpredictable memory, storage requirements

• Heavy use of visualization libraries: "our histogram libraries are lovingly
created…a little bit too much religion is involved in creating histogram
libraries."

Gradual Learning Curve

Gradual Learning Curve
• Want: small effort to result in small rewards

Gradual Learning Curve
• Want: small effort to result in small rewards

• In reality: small effort is not rewarded; large efforts result in large rewards

Gradual Learning Curve
• Want: small effort to result in small rewards

• In reality: small effort is not rewarded; large efforts result in large rewards

• GUI to CLI

Gradual Learning Curve
• Want: small effort to result in small rewards

• In reality: small effort is not rewarded; large efforts result in large rewards

• GUI to CLI

• Notebooks to traditional programming environments

Gradual Learning Curve
• Want: small effort to result in small rewards

• In reality: small effort is not rewarded; large efforts result in large rewards

• GUI to CLI

• Notebooks to traditional programming environments

• Local to HPC

Gradual Learning Curve
• Want: small effort to result in small rewards

• In reality: small effort is not rewarded; large efforts result in large rewards

• GUI to CLI

• Notebooks to traditional programming environments

• Local to HPC

• In contrast: Resnick's low floors, high ceilings, wide walls

A Vision

A Vision
• Develop languages and tools that afford a gradual progression from

small-scale analysis to complex software development

A Vision
• Develop languages and tools that afford a gradual progression from

small-scale analysis to complex software development

• Develop and validate scientific software engineering practices and tools

A Vision
• Develop languages and tools that afford a gradual progression from

small-scale analysis to complex software development

• Develop and validate scientific software engineering practices and tools

• Facilitate gradual learning via low-commitment formal education

A Vision
• Develop languages and tools that afford a gradual progression from

small-scale analysis to complex software development

• Develop and validate scientific software engineering practices and tools

• Facilitate gradual learning via low-commitment formal education

• Compare MOOCs (many small videos) to semester-long courses
(monolithic)

PL Ideas To Consider
• Is functional programming a good match?

• Can we make a functional PL that "looks" like Python?

• Closer match to papers (math)?

• Auto-parallelization (for relevant programs)

• Automatic resource estimation (memory, storage, CPU)

• High performance (no GC or rare GC)

Conclusion
• Appropriating SE practices & tools has led to guilt and challenges

engaging with the SE community

• But these practices may be inappropriate for many scientists

• Tool and practice designs centered around gradual adoption may make
scientists much more effective

Conclusion
• Appropriating SE practices & tools has led to guilt and challenges

engaging with the SE community

• But these practices may be inappropriate for many scientists

• Tool and practice designs centered around gradual adoption may make
scientists much more effective

Michael Coblenz
mcoblenz@ucsd.edu

