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Motivation: Reproducing the Machine Learning Pipeline
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• Many machine learning workflows in weather and climate are beginning to transition 
from research products toward operational systems

• Key differences between more static research settings and more dynamic operational 
settings may compromise the reproducibility of ML pipelines and their results
– Cannot reproduce the same model training and predictions
– Cannot reproduce the same level of accuracy
– Robustness to missing data and edge cases

• Goals:
– Identify key challenges limiting reproducibility throughout the ML pipeline
– Discuss strategies to address these challenges based on different ML use cases



1. Supervised learning using hand-labeled CAM 
storm objects and ML algorithms

2. Unsupervised/semi-supervised learning 
using CAM storm objects, ML, and clustering 
algorithms

Goal: Develop techniques to objectively identify convective mode in 
convection-allowing models (CAMs) using machine learning (ML) algorithms.

Storm Mode: Motivation



Storm Mode: Segmentation, Tracking and Labeling
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Hagelslag: segment storms and track with image 
processing techniques Hand Labeling: web interface

Challenge: upgrades/bug fixes to 
segmentation algorithm resulted in 
differing numbers and locations of 
segmented storms from hand-labeled 
dataset.

Solution 1: Run original 
hand labeled data 
through models for 
evaluation and not 
re-train. 

Solution 2: Use 
matching algorithm to 
link old labeled storms to 
new storms.

Solution 3: Use training 
and evaluation 
approaches that require 
minimal hand-labeling.



Model Architectures
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Challenge: Storm does not fit entirely within image patch

Solutions: use summary metrics based on full storm extent, 
expand patch, use a grid-based segmentation

Challenge: Pre-processing pipeline changed during project

Solutions: relabel quickly using proxy labels and bulk labeling 
of storms based on clusters



Spatial and Temporal Trends in Mode
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Storms with Predicted Mode Agreement
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Challenge: evaluate storm mode models without a massive 
hand labeling effort

Solution: examine consistency among storm labels and 
conditional probability of different severe hazards given mode



Storm Mode Visualization Pipeline
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HRRR Zarr 
Output on AWS

Hagelslag Storm 
Extraction

ML Storm Mode 
Inference

Mode Prediction 
CSV Files

Storm Object 
Geojson Files

d3.js Data 
Backend

Plotly Javascript 
Visualization

ncar.github.io/modeview



Challenges Reproducing Scaling of Data
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Challenge: re-scaling data is lossy due to floating point arithmetic
● Amount of lossiness depends on the variance of the data
● Quantile scaling is more adaptable than standard scaling

Challenge: transferring scaling values between different systems
● Scikit-learn requires users to serialize their Scaler objects
● NCAR’s bridgescaler package saves scikit-learn-like scaling objects 

to json files for more reproducible scaling

Challenge: calculating scaling values across distributed datasets
● Bridgescaler has added distributed methods for standard scaler and 

min max scaler
● Floating point math makes the distributed solution approximately 

the same as the local solution
● T-digest method allows for approximate distributed calculation of 

quantiles (https://github.com/tdunning/t-digest) Note: Python 
version not working with >3.8

https://github.com/tdunning/t-digest


Decomposition of Uncertainty

Aleatoric Uncertainty Epistemic Uncertainty

Definition: Uncertainty from variation in data.
Estimated by: Single probabilistic AI model.
Reduce by: Gather more informative inputs

Definition: Uncertainty from variation in models.
Estimated by: Ensemble of deterministic AI 
models.
Reduce by: Gather more examples or use 
simpler models.

Definition: Combined aleatoric and epistemic uncertainty.
Estimated by: 
1) Ensemble of probabilistic AI models
2) Single “evidential” (higher-order probabilistic) AI model
3) Bayesian AI models

Total Uncertainty
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Dirichlet Aleatoric and Epistemic Uncertainties

Law of total variance decomposes the total uncertainty into the sum of the unexplained variance 
plus the explained variance: 

Aleatoric (unexplained) = 

Epistemic (explained) = 

Total = Aleatoric + Epistemic



Theory of Evidence and Subjective Logic

Dempster-Shafer Theory of Evidence (DST), a generalization of Bayesian theory of subjective 
probabilities, assigns belief masses to subsets of possible labels for an observation. 

If belief masses for an observation are all equally likely ~ “I do not know.”

Subjective logic (SL) formulates belief assignments bk over K classes, plus “I don’t know”, as a 
Dirichlet distribution (prior). For a NN with K outputs 

where bk is the kth ReLU output, interpreted as the “belief mass” of the kth class, and u is the 
uncertainty mass of the K outputs.

Each bk is defined as

where and thus 

Sensoy et al. (2018) arXiv:1806.01768v3

https://arxiv.org/abs/1806.01768v3


Evidential Deep Learning 
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Paper: Evidential Deep Learning: 
Enhancing Predictive Uncertainty 
Estimation for Earth System 
Science Applications

https://arxiv.org/abs/2309.13207
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(i) Deterministic: 

Predict probabilities for classes

Loss = Cross-entropy

pk = Softmax(fw(T,Tdew,U,V))k

(ii) Evidential:
 

(Sensoy et al. 2018)
Predict evidence for classes 

Loss = Evidential

ek = ReLU(fw(T,Tdew,U,V))k
𝛂k = ek + 1

Compute S, evidential u, 
and the probabilities pk

fw

Evidential Model Architecture
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Input (0 - 5 km above surface, every 250 meters)

➢ Temperature, Dewpoint, U-Wind, V-Wind

Probabilistic Forecast Example: Classifying Winter Precipitation Type

Target
➢ mPING Crowd-sourced reports of winter 

precipitation types
➢ Rain, Snow, Sleet, Freezing Rain

Data
➢ NOAA Rapid Refresh Vertical Profiles
➢ Interpolate from pressure to height coords
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Precipitation-type Validation
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How well does each type of uncertainty discriminate between easier and harder to classify events?



Regional Case Study
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Consistency of Composite Soundings by Uncertainty Metric and Model
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MILES Group Python Packages
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• miles-guess (github.com/ai2es/miles-guess):
– Implementations of evidential neural networks, deep ensembles, and Monte Carlo dropout

• echo-opt (github.com/NCAR/echo-opt):
– Distributed hyperparameter optimization on HPC systems
– Supports GPU allocation, XAI visualization for hyperparameter settings

• hagelslag (github.com/djgagne/hagelslag): 
– Object segmentation, tracking, and data extraction for convection-allowing model output
– verification scores and plots

• bridgescaler (github.com/NCAR/bridgescaler): 
– Reproducible saving/loading of sklearn preprocessing scalers and transforms
– Custom scalers for groups of variables and image patches



Summary
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Evidential deep learning enables 
evaluation of situations when high 

variance among models is more likely.

Email: dgagne@ucar.edu

Scaling of input data exhibits multiple 
sensitivities.

Reproducing pre-processing steps as 
critical and reproducing ML model.


