METPLUS

The Long and Winding Road to Unified Verification

Tara Jensen NCAR/RAL and DTC 9 Nov 2023

Workshop on Correctness and Reproducibility for Climate and Weather Software

Why Unified Verification?

Comprehensive and unified verification tool - Make R2O more efficient - Provide a consistent set of metrics

Allows researchers and operational scientists to speak a "common verification" language

User support of unified package provides greater opportunity to train all on verification best practices

METplus Team and Core Collaborators

- Management:
 - Tara Jensen¹, Molly Smith², Bonny Strong², Matt Wandishin²
- MET Engineering:
 - John Halley Gotway¹, Howard Soh¹, Dave Albo¹, Randy Bullock¹, Seth Linden¹,
- METplus Engineering:
 - George McCabe¹, Julie Prestopnik¹
- METplus Analysis Suite Engineering: METviewer, METexpress, METdataio, METcalcpy, METplotpy
 - Tatiana Burek¹, Minna Win-Gildenmeister¹, Hank Fisher¹, Molly Smith², Randy Pierce²
- Atmospheric Science:
 - Tara Jensen¹, John Opatz¹, Dan Adriaansen¹, Tina Kalb¹, Jonathan Vigh¹, Jason English², Jeff Hamilton², Mrinal Biswas¹
- Statistics:
 - Eric Gilleland¹, Barb Brown¹

- EMC
 - Jason Levit, Alicia Bently, Mallory Row, Perry Shafran, and the rest of VPPPG Branch
- h Met Office
- Air Force
- Naval Research Lab
- Community
 - UFS Verification and Validation Cross Cutting Team
 - Other NCEP Centers: WPC, CPC, SWPC, SPC, OPC, NCO
 - NOAA Labs: GSL, PSL, MDL, ARL
 - NCAR and UCAR: RAL, MMM, CGD, ACOM, COMET
 - Universities and Cooperative Institutes: UW CIMMS, CSU CIRA, CU CIRES, George Mason University, SUNY Albany, SUNY Stony Brook, Embry Riddle U, University of Illinois Urbana Champagne, University of Miami
 - Private: AER, SPIRE

METplus History

<u>Goals</u>

- Develop a model/forecast verification package that can be used across the community
- Replicate core capability of EMC • VSDB package. This was completed in 2015

2019 – METplus Analysis and **Diagnostic Tools** dev started

2016 – METplus Wrappers dev started

accepted for install on NOAA WCOSS2 2021 – METplus wrappers accepted for

2017 – EMC starts developing Global workflow using METplus on WCOSS

install on WCOSS

2009 - METviewer

2004 – MET idea

formed

2008 - First Release

of MET

dev started

2015 - Selected as verification package for NOAA Unified Forecast System

Challenge: Extending core capability in a way that is useful to scientists without refactoring every 5 years **Current METplus Code Base** C++ Fortran Python – limited libraries

2023 – All components

What is METplus?

Suite of Python wrappers around

- MET (core)
- Analysis Tools
 - METviewer/METexpress User Interface
 - METviewer Batch Engine
 - Python-based Diagnostics and Plotting
- Communication between MET & python
 algorithms
- Using manage_externals to connect repos

- Over 150 traditional statistics and diagnostic methods for both point and gridded datasets
- 15 interpolation methods
- Mix of C++, Fortran, Python language driven by operational reqs
- Developed to allow for easy sharing of config files for reproducible results
- 3500+ users; US and Int'I

GFS003_vs_GFS_T1534_i00_f012.n

METplus – A Layered System

- Wrappers around core MET statistics tools - represented by black arrows – low level workflow
- MET suite of statistical and diagnostic tools
- Analysis Tools available for advanced analysis includes
 - METviewer user interface
 - METexpress user interface
 - METdataio, METcalcpy, METplotpy Python components

Version 5.1 released Aug 1st

Core MET Tools

- MET suite of statistical and diagnostic tools
- Reformatting tools
- Data Inspection tools
- Statistical tools
- Analysis tools
- Traditional grid-to-grid and grid-to-point statistics
- Ensemble statistics
- Spatial methods
- TC methods

DTC

MET Overview v11.1.0

Legend

PythonEmbedding

Legend

DTC

DTC

METplus Components

- Wrappers represented by black arrows low level workflow
- MET suite of statistical and diagnostic tools
- Analysis Tools available for advanced analysis includes
 - METviewer and METexpress user interface
 - METdataio, METcalcpy, METplotpy Python components
- Work in progress to allow for command line use of analysis tools

DTC

Reproducible Statistics and Methods

CTS measures of TC genesis

Masking

DTC

Tradi	tional			
Grid-Stat, Point-Stat, Series-Analysis Contingency table statistics (CTS) Continuous statistics Probability forecast statistics Confidence intervals	Ensemble-Stat CRPS, CRPSS Rank prob., Prob. Integral Transform (PIT), and Relative Position histograms Spread/Skill Ignorance Confidence intervals			
Spa	tial			
MODE Location differences Geometric attribute differences Intersection area Intensity distributions & differences CTS measures Wavelet-Stat	MODE-TD Time and location differences Volume differences Velocity differences Intersection volume Intensity distributions & differences Grid-Stat and Point-Stat			
MSE by scale Energy by scale Intensity-scale skill score	FSS, <u>HiRA</u> Distance Measures: MED, Baddeley, <u>Hausdorff</u> , Zhu, etc.			
Tropical Cyclones and Diagnostics				
MET-TC Track error (along, cross, total) Intensity errors (pressure, wind) Rapid intensification/weakening errors CTS measures of TC genesis	Grid-Diag Distributions of fields for use in contour plots TC-RMW Radius of maximum wind errors and			
TC-GEN	metrics			

Neighborhood Methods

Fraction = 6/25 = 0.24 Fraction = 6/25 = 0.24

Examples of Community Contributions

Examples of Community Contributions

Space Weather

2. Data Rich vs. Data Sparse Regions

DATA RICH REGIONS masking region

DATA SPARSE REGIONS masking region () 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Data Min = 0.0, Max = 1.0, Mean = 0.6

1.0

DTC

Masking: Observing **Stations**

Masking: Not Near Observing Stations

Climate

Reproducibility and Correctness

How Correctness is Achieved

Feature or Issue development team includes:

- Scientist, Engineer, Documentation Specialist
- Each feature or dev task has Github issue assigned. Feature Branch broken off from dev branch using Github ID when work is being performed
- Github Actions used for Continuous Integration testing of new features during each pull request
 - Container used for GA
 - Scientist and/or Engineer are included in pull request phase for quality assurance
- Beta releases for user and cross-platform testing purposes are published every 6-8 weeks. 4-5 Beta releases per major development cycle

How Reproducibility is Achieved

Configuration files for:

- METplus wrapper allows for most features to be configured
- Reads MET config file and swaps in METplus wrapper environment variables
- METplus Analysis Suite uses a combination of XML and YAML for configuration options
- Examples are published in online documentation as "use-cases" which include METplus .conf, METplus .config, sample data, and documentation on how to run
- Cross platform testing is performed during every beta release

Support and Training

METplus

Search docs

User's Guide

- 1. Overview
- 2. Software Installation
- 3. System Configuration
- 4. Python Wrappers

□ 5. METplus Use Cases

5.1. MET tools

□ 5.2. Model Applications

5.2.1. Air Quality and Composition

5.2.2. Climate

5.2.3. Convection Allowing Models

5.2.4. Cryosphere

5.2.5. Data Assimilation

5.2.6. Marine and Coastal

5.2.7. Medium Range

5.2.8. Precipitation

5.2.9. Subseasonal to Seasonal

5.2.10. Space Weather

5.2.11. Tropical Cyclone and Extra Tropical Cyclone

6. METplus Ouick Search for Use Cases

7. METplus Configuration Glossary

8. References

User's Guide and **Getting Help**

https://metplus.readthedocs.io/en/ latest/Users_ Guide/

5.2.9. Subseasonal to Seasonal

Subseasonal-to-Seasonal model configurations; Lower resolution model configurations (>4km) usually producing forecasts out beyond 14 days and up 1 year

Grid-Stat and Series-Analysis: BMKG APIK Seasonal Forecast

Blocking Calculation: RegridDataPlane, PcpCombine, and Blocking python code

Blocking Calculation: RegridDataPlane. PcpCombine, and Blocking python code

UserScript: Make a UserScript: Make a

WeatherRegime Calculation: RegridDataPlane. PcpCombine, and WeatherRegime python code

https://github.com/dtcenter/METplus/discussions

Basic Training To Get You Started

Basic (2021-2022) https://dtcenter.org/events/ 2021/metplus-training-series

Session 1 - No	vember 30, 2021 9am MST / 11am EST / 1600 UTC	
Session 2 - De	cember 7, 2021 9am MST / 11am EST / 1600 UTC	
Session 3 - De	cember 14, 2021 9am MST / 11am EST / 1600 UTC	
Prerequisite: C	omplete Plot-Data-Plane Hands-On	
Presentation: A	nnouncements and set up refresher	
Presentation: G	ien-Vx-Mask	
Hands-On: PCP-	Combine and Gen-Vx-Mask	
Homework: Rev	view Recording and PCP-Combine and Gen-Vx-Mask Hands-On Sessic	ons
Recording and	Chat Archive: Chat Log	
	s Training Series: 2021 2022: Session 3 Water ETplus Training Series 2021 - 202	later Share
	Watch	later Share

Advanced (2023) https://dtcenter.org/events/2023/metplus-advanced-

• NOAA HPCs: WCOSS2, Hera, Jet

Online Training

ABOUT - TESTING + EVALUATION - COMMUNITY CODE - VISITOR PROGRAM -

NEWS EVENTS

WELCOME TO THE METPLUS PRACTICAL SESSION GUIDE

The METplus v5.0.0 practical consists of 11 sessions. The first six sessions contain instructions for running individual MET tools directly on the command line, followed by instructions for running the same tools as part of a METplus use case. The remaining sessions dive into special applications of METplus and the Analysis tools available in the METplus suite.

https://dtcenter.org/metplus-practical-session-guide-version-5-0

CONTENTS

Basic Verification Statistics Review	+	Session 6: Track And Intensity	+
Preliminary Work: METplus Setup	+	Session 7: Feature Relative Use Cases	+
Session 1: Grid-To-Grid		Session 8: METplus Analysis Tools	
Session 2: Grid-To- Obs	+	Session 9: Python Embedding	+
Session 3: Analysis Tools	+	Session 10: Subseaso To Seasonal (S2S)	
Session 4: Ensemble And PQPF	+	Session 11: METplus Cloud	+
Session 5: MODE And MTD	+		т —

METplus Use Cases

8. METplus Quick Search for Use Cases

8.1. Use Cases by MET Tool:

ASCII2NC CvclonePlotter EnsembleStat GenVxMask GenEnsProd GridStat GridDiag IODA2NC MODE MTD PB2NC **PCPCombine** Point2Grid PlotDataPlane PlotPointObs PointStat RegridDataPlane **SeriesAnalysis StatAnalysis TCDiag TCMPRPlotter TCGen TCPairs** TCRMW TCStat

<u>Use Cases:</u>

- Sample Data
- Sample Configuration Files
- Documentation

https://metplus.readthedocs.io/en/ latest/Users Guide/usecases.html

8.2. Use Cases by Application:

Air Quality and Composition Climate Clouds Short Range Data Assimilation Ensemble Land Surface Marine and Cryosphere Medium Range PBL Precipitation Space Weather Subseasonal to Seasonal Subseasonal to Seasonal: Madden-Julian Oscillation Subseasonal to Seasonal: Mid-Latitude Tropical Cyclone and Extra-Tropical Cyclone

8.3. Use Cases by Organization:

Developmental Testbed Center (DTC) National Center for Atmospheric Research (NCAR) NOAA Weather Prediction Center (WPC) NOAA Space Weather Prediction Center (SWPC) NOAA Environmental Modeling Center (EMC) NOAA Global Systems Laboratory (GSL) NOAA Hydrometeorology Testbed (HMT) NOAA Hazardous Weather Testbed (HWT) State University of New York-Stony Brook University (SUNY-SBU)

Grid-Stat: Standard Verification of Surface Fields

Point-Stat: Standard Verification of Global Upper Air

METplus

PyEmbedIngest: Multiple Fields in One File

15 years of reproducible results

METplus and MET <u>user support discussion forum</u>

METplus <u>website</u>, <u>online tutorial</u>, <u>training series</u> METplus <u>repository</u>, <u>documentation</u>, <u>releases</u>, <u>Docker</u>, <u>v5.1.0</u> <u>development</u>

<u>Contact:</u> Tara Jensen jensen@ucar.edu, molly.b.smith@noaa.gov

