
Unit Testing
NCEPLIBS

Workshop on Correctness
and Reproducibility for
Climate and Weather

Edward Hartnett, CIRES/NOAA
Nov 9, 2023, Boulder, CO

Survey

How many routinely use unit testing when coding?

How many write software but have never written a unit test?

NCEPLIBS Libraries
● Required libraries/utilities for UFS and other NOAA applications
● 21 Repositories of Fortran 77 with some C/F90, not all active.
● Transitioned active repos to agile to improve quality, reduce costs
● Handles I/O, interpolation, GRIB1/GRIB2, BUFR
● Development roadmap:

○ 2020 - GitHub and CMake build systems
○ 2021 - Build system improvements
○ 2022 - CI, doxygen, unit testing
○ 2023 - Unit testing, refactoring
○ 2024 - Refactoring and modernization

Benefits of Unit Testing + CI
● Reduces risk of catastrophic software failure.
● Proven productivity gain (i.e. it’s much cheaper).
● Testable code is modular, well-documented code with good APIs.
● Eliminates most debugging.
● Near-immediate feedback for programmer.
● Automatically run and results are automated.
● Packages can be individually tested (automatically) for porting.
● Many variants tested.
● Additional automatic checks like documentation, memory leak, compiler warning.

Unit testing dramatically increases programmer productivity.

Unit Testing Takes Discipline

● Testing needs to become central to development work.
● Tests must check all output carefully.
● Requires effort to fill in missing tests on legacy projects.
● Tests must be written before untested code is modified.
● Tests must be provided with all new code.
● Test code and CI system add on-going maintenance work.

Unit testing must be strict to yield full benefits.

Emotional Component

● For legacy programmers:

more tests = more code = more pain.

● For modern programmers:

more tests = more safety = faster coding.

Legacy programmers do not believe programming
can be done in a better way.

Time is Not the Problem

● Programming without unit tests is very slow and inefficient.
● Tasks routinely take weeks or months, tests take hours.
● Once problem space is understood, very useful test code can be written in

minutes/hours.

You always have time to program more efficiently.

System Tests are Not Enough

● System tests involve the whole codebase, so debugging is still required.
● Cannot test every code path.
● Output data changes are hard to untangle.
● Generally not immediate, generally manually run, sometimes manually

interpreted.

System tests are necessary but not sufficient. Unit testing
adds significant value and speeds development.

System Tests Cannot Detect All Bugs

● In UFS_UTILS test-writing, a bug was discovered in chgres_cube: “sets the
SST values for small lakes that are far from other water bodies”

● This bug was not obvious and only found due to unit testing.
● Why degrade science results with undetected but avoidable software bugs?

TEST FAILED

 SST SHOULD BE: 273.160000000000

 SST FROM TEST: 268.684500000000
https://github.com/NOAA-EMC/UFS_UTILS/issues/441

These avoidable bugs can degrade science results
without being visible in system test results.

https://github.com/NOAA-EMC/UFS_UTILS/issues/441

Unit Testing and Test Coverage
● Unit tests are small programs which call our code and check output for correctness.
● Unit tests are run by programmer/CI with “make test”. All tests must pass.
● All tests are automated - no human is required to decide if tests pass/fail.
● Test code coverage is measured to ensure we are testing all our code.

Run on Each Commit on Each Pull Request
● Ubuntu/MacOS/Spack
● GNU/Intel compilers
● Versions of dependencies.
● CMake build options.
● Shared/static builds.
● Documentation check.
● Memory checking.
● Compiler warning check.
● Test code coverage

analysis.

CI doesn’t let anyone merge broken code,
saving team time.

1. Set up testing in CMake, add first test, set up CI to run tests, test coverage
analysis, memory checking.
○ No extra test “framework” is needed.
○ CMake provides nice default output.

2. Documentation upgrade to doxygen.
3. Convert existing manual tests to automatic testing.
4. Use code coverage analysis to fill in gaps (aim for 85% coverage).
5. Enforce test code coverage to ensure new code is tested.

Test writing is impactful, easy and fun.

HOW WE WROTE NCEPLIBS TESTS

When coding:

● Write tests first/concurrently with code.
● Update/improve documentation.
● Writing tests encourages modular code with good API.
● Make changes quickly, with confidence that nothing will break.

Unit tests allow programmers to improve the code with
confidence and speed.

NEW PRACTICES - CODING

All NCEPLIBS bug investigations result in more unit tests:

● Start with a “reproducer” test at the top level.
● Continue to work down the call stack until problem is resolved.
● Tests remain part of the code.
● A final effort is made generalize the tests.

All NCEPLIBS Debugging Efforts Result in Tests which
prevent recurrence.

NEW PRACTICES - DEBUGGING

1

2

3

4

5

ROADMAP to NCEPLIBS Unit Testing

Use CI system and code
review to enforce test

coverage for new code.

Convert manual tests to
automatic unit tests.

Add CMake build, doxygen, unit
testing, CI, memory and

warnings

Use code coverage
analysis to fill test gaps.

Upgrade legacy
documentation to doxygen

NCEPLIBS Unit Testing Team

● Team size is small - part time effort from 3-4 FTEs.
● We had some help from student interns.
● We’ve been engaged in documentation/unit testing (part-time) for ~ 3 years.
● Total time devoted to testing: ~1 FTE for 1 year.

This allows us to maintain and release these codes more
quickly and efficiently.

NCEPLIBS Unit Testing Coverage 11/23
Repository Purpose LOC Test Code Coverage

NCEPLIBS-bacio File I/O Fortran/C Library 1.4K 88%

NCEPLIBS-bufr BUFR Fortran/C Library 32K 86%

NCEPLIBS-g2tmpl GRIB2 Templates 3K 85%

NCEPLIBS-g2 GRIB2 Fortran Library 14K 75%

NCEPLIBS-g2c GRIB2 C library 19K 74%

NCEPLIBS-ip Fortran Interpolation Library 13K 65%

NCEPLIBS-sp Fortran Spectral Interpolation 8K 53%

NCEPLIBS-grib_util GRIB1/2 Utilities 22K 24%

NCEPLIBS-w3emc GRIB1 Fortran Library 63K 2%

NCEPLIBS-prod_util UFS Utilities (mostly GRIB1) 0.5K 0%

NCEPLIBS Community Contributions
● We’ve already had significant outside contributions to the GRIB2 code.
● We are happy to work with outside developers (from trusted partners, with

detailed review).
● The CI systems impersonally enforces many community contribution

requirements.
● Unit testing gives team and contributor confidence.
● We can help with unit testing if that’s needed.
● Team time is saved when contributions can be checked before human

intervention.

Unit tests and CI lower the bar for community contributions.

Unit testing is an
engineering best

practice universal in the
software industry.

Unit testing is a
discipline which allows
us to program faster and

spend less time on
maintenance.

AGU Poster
IN51B-0416: NCEPLIBS GRIB and BUFR Libraries: Maintaining and Modernizing NOAA’s
Libraries for WMO Data Formats

Edward Hartnett, Jeff Ator, Hang Lei, Alexander Richert, Jack Woolen, A. King, A. Hartnett

ABSTRACT

The software libraries used at NOAA to read and write data files for WMO formats GRIB and BUFR have been
under continuous development for at least the last 30 years.These libraries play a vital role in many operational
systems at NOAA, and are also used by teams and scientists outside NOAA. In this paper we describe the
libraries and their capabilities, and document recent modernization efforts. We trust that these libraries will
continue to provide value to NOAA and the science community for decades to come.

Session Number and Title: IN51B: Advances in Earth and Space Science Informatics
Session Date and Time: Friday, December 15th; 8:30 AM – 12:50 PM PST

Location: Moscone Center, South, Poster Hall A-C

There has been much improvement in NCEPLIBS testing
and automation.

The NCEPLIBS libraries and utilities are agile, portable,
and benefit from community contributions. They are

ready to provide value for NOAA for decades to come.

MISSION
STATEMENTCONCLUSION

