

Models, Data, and Wisdom: How do we know when to trust a climate model?

Steve Easterbrook, University of Toronto

Email: sme@cs.toronto.edu Blog: www.easterbrook.ca/steve Mastodon: @steve@fediscience.org

CC (i) (S) (C) Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

Buy my book!

"This engaging, beautifully written book brings alive the scientists who created climate models, how they did it, and what the models can (and cannot) tell us - all in straightforward, nontechnical language and enlightening illustrations.

If you want to understand how modern climate science works, start here."

-- Paul N. Edwards, Stanford University. Author of A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming

Order directly from Cambridge University Press and use the code COMC2023 at checkout for a 20% discount!

Talk Outline

- 1. Prelude
 - What Arrhenius got wrong...
 - Systemic approaches for protection from errors
- 2. How good are today's models?
 - Engineering View: Are they well constructed?
 - Philosophical View: Are the models valid?
 - Empirical View: Do they match observations?
 - Sociological View: Are the results peer reviewed and replicated?
- 3. Extracting wisdom from models

The First Computational Climate Model

1895: Svante Arrhenius constructs an energy balance model to test his hypothesis that the ice ages were caused by a drop in CO2;

(Predicts global temperature rise of 5.7°C if we double CO2)

Schematic of the model equations

A reimplementation

 ΔT for Doubled CO2 – Using Arrhenius's radiative absorption data

Now with modern data...

ΔT for Doubled CO2 – Using Lowtran Radiation data

For more, see: Dufresne, J.-L. (2009). L'effet de serre: sa découverte, son analyse par la méthode des puissances nettes échangées et les effets de ses variations récentes et futures sur le climat terrestre. Habilitation Thesis, Université Pierre et Marie Curie, Paris.

Swiss Cheese model of fault protection

Mars Climate Orbiter

- Launched
 - 11 Dec 1998
- Mission
 - interplanetary weather satellite
 - communications relay for Mars Polar Lander
- Fate:
 - Arrived 23 Sept 1999
 - No signal received after initial orbit insertion
- Cause:
 - Faulty navigation data caused by failure to convert imperial to metric units

Assessing Model Quality

- 1. Engineering quality:
 - How many errors in the code?
 - Is it tested to industry standards?
- 2. Philosophically speaking:
 - Popper: Are they refutable?
 - Lakatos: Is the field progressing?
- 3. Empirically speaking:
 - Do the models match observations?
 - Have the models made successful predictions?
- 4. Sociologically speaking:
 - Are the models and results independently replicated?
 - Is all the data and code freely available?

Pipitone, J., Easterbrook, S. (2012). Assessing climate model software quality: a defect density analysis of three models. *Geoscientific Model Development*, 5(4), 1009–1022.

Hypotheses for low defect rates

O Domain Expertise

- Developers are users and experts
- O Rigorous Development Process
 - Code changes as scientific experiments, with peer review
- Slow, cautious development process
- Narrow Usage Profile
 - And hence potential for brittleness
- Intrinsic Defect Sensitivity / Tolerance
 - Bugs are either obvious or irrelevant
- Successful Disregard (and hence higher technical debt)
 - Scientists tolerate poor code & workarounds, if they don't affect the science

Pipitone, J., Easterbrook, S. (2012). Assessing climate model software quality: a defect density analysis of three models. *Geoscientific Model Development*, 5(4), 1009–1022.

E.g. Testing strategy for ICON

Simple tests with a known solution

- Shallow water test
- Baroclinic wave test (runs automatically for ICON)

Bit-level reproducibility tests

- Compare restarted run with uninterrupted run
- Compare parallel vs sequential configurations
- Comparison with reference model
- Aquaplanet tests
- Hindcasts for the fully coupled model
 - 20th Century
 - Pre-industrial
 - Paleoclimate

Every code change is hypothesis testing

Acknowledge Model Errors

See: Stevens, B., et al. (2013). Atmospheric component of the MPI-M Earth System Model: ECHAM6. Journal of

"All models are wrong..."

Karl Popper

- A theory is scientific if it can be refuted
- In practice, you don't throw out a theory at the first failed test...
- Science evolves through "survival of the fittest":
 - many competing theories, discard the most problematic

Imre Lakatos

- A program of research is scientific if it makes progress = more successful predictions over time
- Hard core of established theory + a protective shell of ancillary hypotheses
 - Adjust these to explain more and more of the world

Models and Process Studies

Jakob, C. (2010). Accelerating Progress in Global Atmospheric Model Development through Improved Parameterizations. *Bulletin of the American Meteorological Society*, *91*(7), 869–876.

Model Tuning - example

Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., ... Williamson, D. (2017). The Art and Science of Climate Model Tuning. *Bulletin of the American Meteorological Society*, *98*(3), *589–602*

Model Ensembles (varied initial conditions)

Successful Predictions

20

First computer prediction of climate change

1967: Syukuro Manabe builds a computer model of the vertical structure of the atmosphere.

Predicts doubling CO2 would raise surface temperature by 2°C

FIG. 8. Vertical distribution of radiative convective equilibrium temperature of the atmosphere with a given distribution of relative humidity for various values of the solar constant.

FIG. 16. Vertical distributions of temperature in radiative convective equilibrium for various values of $\rm CO_2$ content.

Manabe, S., & Wetherald, R. T. (1967). Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity. Journal of the Atmospheric Sciences.

Manabe's prediction for 2000

https://www.realclimate.org/index.php/archives/2021/10/a-nobel-pursuit/

Hansen's 1988 projections

Hausfather, Z et al (2020) Evaluating the Performance of Past Climate Model Projections. Geophysical Research Letters, 47(1).

When the map and the territory disagree...

Better than Data?

Thompson, D. W. J., Kennedy, J. J., Wallace, J. M., & Jones, P. D. (2008). A large discontinuity in the midtwentieth century in observed global-mean surface temperature. *Nature*, *453*(7195), 646–649.

Better than Data?

https://www.carbonbrief.org/analysis-why-the-new-met-office-temperature-record-shows-faster-warming-since-1970s

The Coupled Model Intercomparison Projects

	CMIP (1996 on)	CMIP2 (1997 on)	CMIP3 (2005-2006)	CMIP5 (2010-2011)	CMIP6 (2017-9)
Number of Experiments	1	2	12	110	305
Centres Participating	16	18	15	31	49
# of Distinct Models	19	24	21	59	109
# of Runs (≈ Models x Expts)	19	48	211	841	>10K
Total Dataset Size	1 Gigabyte	500 Gigabyte	36 Terabyte	3.3 Petabyte	50 Petabyte
Total Downloads from archive	?	?	1.2 Petabyte	(still growing)	(still growing)
Number of Papers Published	47		595	thousands	??

All data freely available on the Earth System Grid Federation e.g. see: <u>https://esgf-data.dkrz.de/projects/esgf-dkrz/</u>

Replicated Experiments

Source: IPCC AR6 WG1 Fig 1.20

An ecosystem of shared experiments

Pascoe, C., et al. (2020). Documenting numerical experiments in support of the Coupled Model Intercomparison Project Phase 6 (CMIP6). *Geoscientific Model Development*, *13*(5), 2149–2167

VolMIP: Model Intercomparison Project on the climatic response to Volcanic forcing - Zanchettin et al. (2016)

Talk Outline

- 1. Prelude
 - What Arrhenius got wrong...
 - Systemic approaches for protection from errors
- 2. How good are today's models?
 - Engineering View: Are they well constructed?
 - Philosophical View: Are the models valid?
 - Empirical View: Do they match observations?
 - Sociological View: Are the results peer reviewed and replicated?
- 3. Extracting wisdom from models

From models to modeling systems

