Correctness workshop at NCAR, 11/9/23

Correctness Concerns in
HPC and ML

‘ H
Ai"

Ganesh Gopalakrishnan and Harvey Dam

.

4

@ KAHLERT SCHOOL OF COMPUTING
THE UNIVERSITY OF UTAH

ABR, U-S. DEPARTMENT OF Office of

THEu 4 EN ERGY Science

UNIVERSITY <
OF UTAH

“Correctness Concerns in HPC and ML” is not a presumptuous title
Let us explain what we mean...

. “H PC”
e “lt iE aII E|E Ellt PDE E E|l lil: §|”
O ltis one of these pursuits:
m Climate simulation
m Finite Elements
o Correctness
0 “”-E EE“EE" |EF:|E:”
m Converges and obeys all conservation laws
® A better characterization offered shortly

. “ML”
E “G E | E E - D E ; E”
O ltis one of these pursuits

m ChatGPT
m Airport screening
o Correctness
m Training and test accuracy are high
® A better characterization offered shortly

What we plan to put forth in this talk

e (GG) That HPC-correctness is rapidly changing at the “bleeding edge”
o Our discussion
m HPC’s use of hardware designed for ML is a huge risk
e That even experts seem to be blissfully unaware of
o (they seldom discuss)
e What have we done about it?

e (HD) That ML-correctness issues are becoming relevant for HPC also
o Intwo ways
m Use of ML methods in HPC
e These contribute to “ML correctness issues”
o And these have “HPC connotations”
e What have we done about it? -

m Use of hardware designed for ML in ML is also a huge risk
e This is something worth knowing
o Future work planned based on others' work

What we plan to put forth in this talk

[
O
|
[
O
e What have we done about it? - Nixing the Nasty NaNs !!
[
O
|
[
O
e What have we done about it? - Fixing the Fairness Faux Pas !!
" ° Understanding and Mitigating Hardware Failures in Deep

Learning Training Accelerator Systems

ISCA 2023 (study group Uchicago and Google)
HW faults turn into Nasty NaNs !!

HPC Correctness Stack : A Generic Portrayal
From Correctness in Scientific Computing (CSC 2023, a DOE/NSF Workshop, Orlando, FCRC)

Informal Problem Description
~
[Interpretation of Problem Description
Rigorous Problem Formulation
.
[Tractability of Math. Model]
Mathematical Formulation

o
[Modeling Approximations]

Numerical Algorithms
~—
[Algorithmic Approximations]
Various HPC Libraries
[Numerical / Parallel Behavior]
Heterogeneous Hardware

<: Problems due to Rising Heterogeneity

" EE Em
R]

"Guarding Numerics Against Rising Heterogeneity", SC Correctness Workshop 2021 by the Pls

DP/SP/HP TFLOP/S

Extreme Heterogeneity and its Correctness Consequences

e Heterogeneity (CPUs/GPUs) the norm

Floating-Point Formats Concurrency Mixed-Precision . . .
| o Rapidly changing in features

|__ ST o AMD GPUs also on the rise

C = m Unknown repro when porting
O e Mostly undocumented building-blocks

o Libraries are binary-only (in

undocumented assembly-level ISA)
Exceptions Compiler Effects Testing

o Compilers differ, especially across
optimization levels
e Various Precision Choices
M DPFMA M SPFMA M HPFMA o FP16, FP8
e Built-in Acceleration for matrix operations
o Tensor cores (NVIDIA)
m Not IEEE compatible
o Matrix cores (AMD)
e No hardware trapping of exceptions in NVIDIA
o AMD allegedly can trap
m We have been unable to activate

100

10

0.1 I

Kepler (CC-3.5)
Kepler (CC-3.5)
Kepler (CC-3.7)
Maxwell (CC-5'2)
Maxwell (CC-5!2)
Pascal (CC-6.1)

Tesla (CC-1.0)

Tesla (CC-1.3)
—

Fermi (CC-2.0)

Fermi (CC-2.0)

Kepler (CC-3.0)
———n

Reasons to focus on FP Exceptions

e Floating-Point NaN and INF exceptions indicate “arithmetic gone wrong”
o ltis important to understand their origins, how they flow, and how they disappear

Gen NaN Prop Nan Prop Nan Kill Mo
-42.0 Born Propagated Propagated Killed
; : x — | NaN + 42 ———> NaN - NaN [NaN < 42
NaN NaN fal
y el T > Na > Na > Talse

o Given these nasty realities, innovative binary instrumentation methods are essential:
m GPU ISAs are not documented (well, or at all)
o Need to reverse-engineer GPU semantics experimentally
m Many important GPU libraries are closed-source
e Binary instrumentation essential to observe exception flows
o (in many cases)
m Once traced, understanding root-cause and fixing is a “black art”
e Generic techniques desired
o E.g., “diagonal boosting” is suggested by some library APls

X. Li, I. Laguna, B. Fang, K. Swirydowicz, A. Li and G. Gopalakrishnan, "Design and
Evaluation of GPU-FPX: A Low-Overhead tool for Floating-Point Exception

HPC Correctness is Seriously Threatened g o s baatel amd bitided Gompeting, Aguet 2025,
by F|Oating-POint Exceptions Pages 59-71, https://doi.org/10.1145/3588195.3592991
GPU-FPX: Our tool for Detecting Exceptions in NVIDIA GPU Binaries

e HPDC 2023 paper published on new tool GPU-FPX released at hitps://github.com/LLNL/GPU-FPX
e Found 27 previously unknown exceptions detected across 151 programs on their own data sets
o Some repairs also identified based on tool feedback

Table 7. Overview of Exception Diagnoses and Repairs using Analyzer for Programs with Severe Exceptions

__ Program Source available? Diagnose? Exceptions Matter? Fixed? How Fixed?

(0/0) - GRAMSCHM yes yes yes yes Remove 0 from input

? LU yes yes yes yes Remove 0 from input
. myocyte yes no N.A. N.A. N.A.
predlcate S3D yes yes no N.A. NA
42 NaN Interval yes yes no N.A. NA
Laghos yes no N.A. N.A. NA
F T Swidlite yes no N.A. N.A. NA
HPCG no no N.A. N.A. NA

CuMF-Movielens yes yes yes yes Enforce variable consistency
cuML-HousePrice partial yes yes partial N.A.
42 C——> CUDA GMRES partial yes yes partial Diagonal boosting
SRU-Example yes yes yes yes Change input generator

https://github.com/LLNL/GPU-FPX

)
-

Vulnerable
GPU
Programs

GPU-FPX Components

DETECTOR

Pinpoints exception-generating
locations across all kernels

-

Table storing location info

\

Index Checked? Trine Generate
_— @ e 0..00 ® Exceptions Exceptional
|]

“ 0..01 Vv < i e Report

Awarp

000 P

check |fin
the glgbal

Check the
destination
registers of

each
instruction in

https://github.com/LLNL/
GPU-FPX

ANALYZER

Reports how exceptions flow
within one instruction

4)

_ Check if this o Check if
instruction is FP _ Checkif this destination and
computation instructionisFP —® . 100 chared a

type control type register (e.q.
(e.g. FADD, (e.g. FSEL) FADD R1, R2, R1)
FMUL) NO
NO
YES l YES l YES l
[Inject codes according to different instructions types ']

each thread

o A

9

il

https://github.com/LLNL/GPU-FPX
https://github.com/LLNL/GPU-FPX

Life gets easier with source-tracking FloatTracker (Alired, Li, Wiersdorf, Gopalakrishnan)
Combined Julia / GPU tracing is being planned

2:43:50 mark at
https://www.youtube.com/live/rMrHCM1Etng?
feature=share

Gen NaN Prop NaN NaN Kill NaN top-Tevel tuple(.)
X « -42.0 Born T Propagated Propagated Bl - G Killed ’ examples/szv_nan_t%jl:? ‘
y « Vx 231
y holds NaN > NaN > false
‘run_mndel(::Type{FloatSZ}, ::Parameter)
Shallow/Waters/runfmodel.jl:37
] 69 162
Pull in FloatTracker _ t’f> ?\.t __
: ime_integration(.. ime_integration(..
usin g F loatT rac ke r | ShalIowWatérs/tirﬁefintegration.jl:ﬁ l ShalIowWatérs/tin?efintegration.jl:?S ‘
Blg 162
: : v i
Wrap inputs in a TrackedFloatx type 0 nsiits | e e |
ShallowWaters/rhs.jl:14 ShallowWaters/continuity.jl:96
num = TrackedFloat64(-42.0) 39 %
162
‘ rhs_nonlinear!(..) rhs_nonlinear!(..) ‘
ShallowWaters/rhs.jl:50 ShallowWaters/rhs.jl:51
Watch as a NaN gets born ! '

39 309 continuity_itself!(.)
ShallowWaters/continuity.jl:65

should_be_nan = sqrt(num)

momentum_u! (..) momentum_v!(..) ‘

ShallowWaters/rhs.l:246 ‘ ‘ ShallowWaters/rhs.jl:275 162
I

39 30

Flush FloatTracker's logs _
-(::TrackedFloat32, ::TrackedFloat32)
f.t f]. u S h 'Log S () FloatTracker/TrackedFloat:102

+(::TrackedFloat32, ::TrackedFloat32)
FloatTracker/TrackedFloat:102

https://www.youtube.com/live/rMrHCM1Etng?feature=share
https://www.youtube.com/live/rMrHCM1Etng?feature=share

How ML-correctness has become Relevant to HPC

e HPC will increasingly rely on ML-surrogates such as PINNs

e Errors in regression and classification can impact Science

AT Benchmarking for Science: Efforts from the
MLCommons Science Working Group

Jeyan Thiyagalingam'®, Gregor von Laszewski?, Jungi Yin®, Murali Emani,

Juri Papay!, Gregg Barrett®, Piotr Luszczek®, Aristeidis Tsaris?,
Christine Kirkpatrick”, Feiyi Wang®, Tom Gibbs®, Venkatram Vishwanath?,
Mallikarjun Shankar®, Geoffrey Fox?%®, Tony Hey'

Table 7: Summary of the Evaluation.

Benchmark | Platforms Science Performance
/(Architectures) |Metric(s) |Metric(s)
cloud-mask |Pearl (V100) Accuracy Scalability

Summit (V100)

stemdl

Summit (V100)

Accuracy, F1

candle—-uno

Theta (A100)

Throughput

tevelop

K80, P100
V100, A100

RTX3080, RTX3090

NNSE

Training Time

Correctness in machine learning, and Science Impacts

Not just loss functions.
e (Generalization
e Robustness
e Fairness

® And all the HPC correctness impacts due to these “ML defects”

Common loss functions

Classification
e Cross-entropy loss
e [score
Regression
e Mean squared error
e Mean absolute error
Reward functions
e Maybe you observe it; maybe you learn it (RLHF)

Robustness

Margins in classifiers
e (Softmax) logit margin
e Parameter margin
e |nput margin

Regression
e Coefficient of determination (R?)
e Gradient magnitude
e Downstream classification?

Adversarial and out-of-distribution robustness
e Input attacks, parameter attacks, hardware attacks
e Mismatch between training and deployed data

What we can do
e Augmentation, adversarial training, human-in-the-loop

Fairness

A few ways of measuring fairness
e Demographic parity: decision is independent of certain features
e Predictive parity: equal precision among subgroups.
e Equal opportunity: equal true positives among subgroups.

Some bias mitigation techniques
e Reweighing (2012)
e Learning fair representations (2013)
e Adversarial debiasing (2018)

You'll probably sacrifice performance on traditional accuracy measures.

Model complexity and other considerations

No free lunch.

Balancing complexity

e Pruning and sparsification (compression)
o What Do Compressed Deep Neural Networks Forget?

n Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, Andrea Frome. https://arxiv.ora/abs/1911.05248
o Understanding the Effect of the Long Tail on Neural Network Compression
L] Harvey Dam, Vinu Joseph, Aditya Bhaskara, Ganesh Gopalakrishnan, Saurav Muralidharan, Michael Garland. https:/arxiv.ora/abs/2306.06238

Interpretability
e Facilitates validation and error analysis
e Alignment with domain expertise or fairness goals

Bias in data
e A generative model may encounter its own output

https://arxiv.org/abs/1911.05248
https://arxiv.org/abs/2306.06238

Understanding the Effect of the Long Tail on Neural Network Compression

Influence of a training example: the expected accuracy gain from training on a
dataset that includes that example vs training on a dataset without it. There is a
way to estimate it in reasonable time via sharding,

(from Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long tail via influence estimation, 2020.)

We used this to estimate the influence of CIFAR10 training examples, then
compressed several image classifiers using Group Sparsity

Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool, and Radu Timofte. Group sparsity: The hinge between filter pruning and decomposition for network
compression. 2020.

And our own parameterized loss function L = al .+ BLMSE + VL cepreg

74 X

original loss difference difference
between logits between predictions

Are instances of disagreements also the most influenced?

training examples
.

J ,
.-y
j

ResNet56

* s

Sometimes.

Loss Function

T-Test Results: Influence On CIEs Vs Influence On Non-CIEs

Baseline

Uniform Subset Combo CE

Round Robin Combo

Random Combo

Uniform Subset Combo CE Pred
Uniform Subset Combo MSE

Uniform Subset Combo CE,CE Pred
Uniform Subset Combo CE,MSE
Uniform Subset Combo CE Pred,MSE
Uniform Subset Combo CE,CE Pred,MSE
SoftAdapt Subset Combo CE,MSE
SoftAdapt Subset Combo CE,CE Pred
SoftAdapt Subset Combo CE Pred,MSE
SoftAdapt Subset Combo CE,CE Pred,MSE
Subset Combo Learnable CE,MSE
Subset Combo Learnable CE,CE Pred
Subset Combo Learnable CE Pred,MSE

Subset Combo Learnable CE,CE Pred,MSE

*

0.00 0.25 0,50 0.75 1.00 1.25 150 1.75 2.00

T-Test Statistic

CIE Type
mmm CIE

mmm CIE-C
mmm CIE-U

Summary and key takeaways

Correctness in ML includes accuracy, robustness, and fairness.
No free lunch — choose a model.

Different kinds of fairness, different ways to pursue it.
Correctness changes when you perturb ML models.

Explain your work and don'’t take forever.

Work in progress: solving the challenges of closed designs

e Better fault-location support based on binary instrumentation
o Tracing executions, comparing traces

e EXxplaining faults, moving toward repair

o Need to gather information from the execution context
m This may again be partly cloistered in closed-source libraries

e Key Takeaways w.r.t. groups like us
o Until the use of robust design practices are firmly in place, it is not in anyone’s interests (esp.
academic groups) to go after failures arising from
m Poor practices
m Legacy code issues

