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Earth system modelling is currently experiencing
disruptive changes offering great opportunities.



1980-2020: The quiet revolution
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Abstract

200 Advances in numerical weather prediction represent a quiet revolution because they have

: resulted from a steady accumulation of scientific knowledge and technological advances over

40.0 1 A | many years that, with only a few exceptions, have not been associated with the aura of
fundamental physics breakthroughs. Nonetheless, the impact of numerical weather

30.0 : : A m . : prediction is among the greatest of any area of physical science. As a computational problem,

1985 1990 1995 2000 2005 o . . .
global weather prediction is comparable to the simulation of the human brain and of the
c ECMWF evolution of the early Universe, and it is performed every day at major operational centres

across the world.




Km-scale models for better predictions
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Adapted from Neumann, Dueben et al. Phil Trans A 2018



Km-scale models are great -- see Medicane lanos (Sep 2020)

Surface wind speed (T+66h, m/s)
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So let’s push km-scale models to operations!? — Not out of the box

Scientific developments will be needed to make the most of km-scale models.
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So let’s push km-scale models to operations!?

Climate is changing,
— we need better models now

Compute power?

9 km — 1 km — Factor 93 = 729 compute power SLLie i 0 : AU

Jek f®F O]
Moore's law is the observation that the number of transistors in S i“.o‘ - T
an integrated circuit doubles about every two years. CPU 6PU FPGA

— 29 =512 — Let’s wait for 18 years?

Data and storage? Source: venturebeat.com
9km: 6,599,680 points x 137 levels x10 variables

2 nts > 05 TR
— 9 billion points — > 0.5 « Individual processors will not be faster

1.5km: 256,800,000 points x 137 levels x 10 variables — Parallelisation / power consumption

-~ . S
— 352 billion points — > 20 TB « Hardware will be more heterogeneous

Uff — CPUs / GPUs / FPGAs / ASICs
* Machine learning has strong impact on
hardware development
— High floprate at low precision

< ECMWF



2015-today: The digital revolution
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major floods
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Adapted from Neumann, Dueben et al. Phil Trans A 2018
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The digital revolution of Earth-system science

Peter Bauer ®'%, Peter D. Dueben’, Torsten Hoefler?, Tiago Quintino ®3, Thomas C. Schulthess® and

Nils P. Wedi'

Compuhhonal science is crucial for delivering reliable weather and climate predicti ; despite decades of
ing experience, llnn is serious about th inability of this ication in the post-Moore/
Dumuvd era. Here, we di the p i m the ﬁcld and pnpou the design of a novel infrastructure that is scal-

able and more anhbll to future, yct k

almosphere and the effects on the climate system have been
d and explained by a vast of scnennﬁc.

blicati a"d '.hf conclusi th t h i
gas emissions need to be drastically reduced within a few decades
to avoid a climate catastrophe—is accepted by more than 97% of the
Earth-system science ¢ ity today'. The p to provide
skillful predictions of extremes in a changing climate, for example,

| he human impact on greenhouse gas concentrations in the

the number and intensity of tropical cyclones and the likelihood of

heatwaves and drought co-occurrence, is particularly high because
the present-day impact of natural hazards at a global level is stag-
gering. In the period 1998-2017, over 1 million fatalities and several
trillion dollars in economic loss have occurred’. The years between
2010 and 2019 have been the costliest decade on record with the
economic damage reaching US$2.98 trillion—US$1.19 trillion
higher than 2000-2009". Both extreme weather and the potential

commodity parallel processing. Moore’s law drove the economics of
computing by stating that every 18 months, the number of transis-
tors on a chip would double at approximately equal cost. However,
the cost per transistor starts to grow with the latest chip genera-
tions, indicating an end of this law. Therefore, in order to increase
the performance while keeping the cost constant, transistors need to
be used more efficiently.

In this Perspective, we will present potential solutions to adapt
our current algorithmic framework to best exploit what new digital
lechnologles have to offer, thus paving the way to address the afore-

d chall In addition, we will propose the concept of
a generic, scalable ‘and performant prediction system architecture
that allows advancement of our weather and climate prediction
capabilities to the required levels. Powerful machine learning tools
can accelerate progress in nearly all parts of this concept.

Technology «——— | ———> Science

Time and energy to solution
x

Spatial resolution

Code portability <«

Individual contributions from:

* Numerical methods, algorithms and data
structures
Machine learning
o Pamaiae o
Heterogeneous processing and memory
architectures

Earth-system
process complexity

System resilience

< Uncertainty estimate
of Earth-system view




EU’s Destination Earth (DestinE) initiative

Towards a Digital Twin Earth

simulations observations
(ECMWF IFS 1.4 km)
Cesa é
EUMETSAT — % * » -~
EEE* »173 EuroHPC
S ECMWF EEt* * _jg; Joint Undertaking - skt



DestinE’s Digital Twin Engine

Framework for Digital Twin Workflows
» High Performance Computing adaptation / Digital Twin optimisation
+ 10 and data workflows
+ Software management, controlling workflows, cloud environments
« Visualization

HPC Medicine

List of ingredients:
workflow manager, data
structures/parallelization
library, model plugin
architecture for interactive
capabilities, key-value
object storage with
semantic, data access API,
|O-Server API, on-the-fly
post-processing API, data
notification system, data
cube API, visualisation &
rendering services

A Game Engine type framework but for Earth Systems...

The Engine will provide the software infrastructure needed for

/! S ( |
\
@ \ o) \ Y \ \ N
V=7 \ (\ 1) 3 ©

machine

. standardised
learning

complex Digital Twin
process interfaces
optimisation

data
high- handling

simulation-
performance observation
computing fusion




2015-today: The digital revolution to allow for km-scale models

© N. Koldunov, AWI

More realistic at global scale Better results via a coupled model system

£ ECMWEF Global km-scale models will improve realism of
simulations significantly and are now becoming available.



Machine learned weather models

< ECMWF



Explore the space of machine learning for weather and climate modelling

Improve understanding

* Fuse information content from different datasources
* Unsupervised learning

* Causal discovery

* Al powered visualisation

* Uncertainty quantification

Speed up simulations

* Emulate model components

* Port emulators to heterogeneous hardware

* Use reduced numerical precision and sparse machine learning
*  Optimise HPC and data workflow

* Data compression

Link communities

Improve models * Health — e.g. for predictions of risks

* Learn components from observations * Energy —e.g. for local downscaling

* Correct biases * Transport —e.g. to combine weather and loT data
* Quality control of observations and observation operators * Pollution —e.g. to detect sources

* Feature detection * Extremes —e.g. to predict wild fires

Weather and climate modelling centres mostly explore the “hybrid space” coupling machine learning to conventional models.



Can we replace conventional Earth System models by deep learning?

If Hamlet were a musical comedy, rather than a tragedy, how would it have ended?
Describe the plot.

If Hamlet were a musical comedy, rather than a tragedy, the ending would likely be much
happier and more lighthearted. Instead of ending in a violent and tragic showdown, with
the deaths of several major characters, the play would likely have a more comedic and

satisfying resolution.

For example, the play could end with Hamlet successfully avenging his father's death, but
then choosing to forgive and reconcile with his uncle, the new king. This would allow

Hamlet to put aside his grudges and bitterness, and to find peace and happiness.

As part of this resolution, there could be a big, energetic finale song, where the
characters sing and dance together, expressing their newfound sense of joy and unity.
This could be a lively and upbeat number, with a catchy and infectious melody, and lyrics
that reflect the themes and events of the play, while also expressing a sense of hope and
optimism for the future.

Overall, a musical comedy version of Hamlet would likely have a more uplifting and
optimistic ending, with the main character achieving a sense of closure and resolution,

and moving on with his life in a positive and fulfilling way.

Ehe New York Eimes [ suascuuse

THE SHIFT

An A.I.-Generated Picture Won an Art
Prize. Artists Aren’t Happy.

“I won, and I didn’t break any rules,” the artwork’s creator says.

Bovemsance &[] Qs

Jason Allen’s A.I-generated work, “Théatre D'opéra Spatial,” took first place in the digital category at the Colorado State Fair. via Jason
Allen



Can we replace conventional Earth System models by deep learning?
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2022 -today: The machine learning revolution

ERAS5, 0 hours

ERAS5, 24 hours

ERAS5, 72 hours

Normalized RMSE diffs ere ce

Initial conditions

ML forecast, 72 hours

GraphCast from Google/Deepmind and Fourcastnet from
NVIDIA are beating conventional weather forecast model in
deterministic scores and are orders of magnitudes faster.

But how do these models actually work?
They get the best results when using very large timesteps.

They are trained for a small Root Mean Square Error.
—> They smear out for large lead times.

Many questions remain:

Can the models extrapolate?

Can they represent extreme events?

Can they learn uncertainty?

Can they be trained from observations?
Can they represent physical consistency?

Images from Keisler (2022)



2022-today: The machine learning revolution

What machine learned models can and cannot do?

« Conventional models will not be replaced by machine learning models entirely.

« Within the next couple of years most weather predictions will come from machine learning models.
« Machine learning will be the perfect glue between models and observations.

« Km-scale models will make a difference for the generation of training datasets.

» Machine learning models have also potential for climate projections despite the extrapolation problem.



2022-today: The machine learning revolution
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Machine learned models can now also do AMIP simulations.
Kochokov et al. @Google in preparation

And Foundation Models will enter the domain...



Dude, when does he finally start to talk
about correctness and reproducibility?



Change of gear g ...
Workmode of 2010: vsa £1 Ql. e
« Asingle scientist can understand the whole Earth system model uanum MMA::M

- Earth system models consist of 100,000 lines of Fortran Code @ e O B E%:"’g

» Code is shared via tarballs, data is stored locally 7 ~-
* Models run on CPUs and Moore’s law is still working i ot

Workmode of 2020:

« Asingle scientist cannot understand the whole Earth system model anymore g
« Ateam of software developers is needed to use heterogeneous hardware o
* Models start to run on GPUs, Moore’s law is dying
- Data is stored locally but meta information is available online Tim Palmer’s A380 comparison
* Online code repositories are used to control quality and share model code

ADAPTER

Workmode of 2030:

* Machine learning models of 2,000 lines of Python code compete with $
conventional models > '

» There are hundreds of models and many of them with specific tasks & ~

« HPC is federated —

- Data is federated <X

NVIDIA.
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Current Systems
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ECMWEF - DESTINATION EARTH

DestinE builds Digital Twins of the Earth

Earth System
models & observations
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Reproducibility — So much room for pessimism

- In 2020, the IFS ran in production on ECMWF’s supercomputer and on a handful
other computers for research. In 2024, the IFS will generate semi-operational
predictions on several of the EuruHPC supercomputers as part of DestinE.

- Today’s high-end models use several tools for portability (OpenACC, HIP, CUDA,
DSLs such as GT4Py, Loki and Psyclone...).

- Machine learning models add new dimensions of complexity:
- Retrained models can be very different
- Use of pre-trained models
- Use of transfer learning
- Use of Foundation models in the future

- Need to define and keep track of dataset and data manipulations



Make machine learning developments comparable via benchmark datasets

Benchmark datasets include:

- A problem statement

- Data that is available online

- Python code or Jupyter notebooks

- Areference machine learning solution

- Quantitative evaluation metrics

- Visualisation, diagnostics and robustness tests

- Computational benchmarks

Benchmark datasets are useful because:

- They allow a quantitative evaluation of machine
learning approaches

- They reduce data access and help scientists to get
access to relevant data

- They allow for a separation of concerns between
domain sciences and machine learning experts

- They allow for a separation of concerns between
domain sciences and HPC experts



Missing machine learning benchmark datasets for atmospheric sciences

Transfer learning

Online and
reinforcement learning

Trustworthy Al,
explainable Al, physical
consistency

Training of machine
learning tools in a
changing climate

Unstructured grids on
the sphere

Multi-scale interactions
in space and time

Dataflow and handling
of huge datasets

Hybrid modelling and
coupling

Uncertainty
quantification and
representation

Weather and climate
predictions based on
machine learning

Modelling

£

The emulation of model
components

Physical,

turbulent
systems

Benchmarks

needed

Post-processing and
down-scaling

Site-specific
characteristics of
observations

Composite
distributions of
observations

Obser-
vations

Extreme value
predictions

Missing data and
irregular spacing of
monitoring sites

Auto correlation and
periodic patterns

Physical constraints

Data anonymity

Fusion of diverse
datasets

Air-quality applications

Nowcasting
applications

Uncertainty estimates

Dueben, Schultz, Chantry, Gagne, Hall, McGovern AIES 2022

Feature detection




Learn how to use machine learning at scale — The MAELSTROM project

MAELSTROM Partner Country
ECMWF Member and Cooperating States in Europe
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ENGINEERING
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MAchinE Learning for Scalable meTeoROlogy and cliMate
The datasets have been published! https://www.maelstrom-eurohpc.eu/content/docs/uploads/doc6.pdf
https://www.maelstrom-eurohpc.eu/ @MAELSTROM_EU
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Data is open, diagnostics are at hand — A new way to verify correctness

WeatherBench 2 /\/o

WeatherBench 2 Evaluation Quickstart
WeatherBench 2 Data Guide
Command line scripts

Distributed computing using Beam on
GCP

Official Evaluation

Submit a new model to WeatherBench
2

Init vs Valid Time Conventions

API docs

0 checkmk

No more downtime. Monitor your
entire IT infrastructure with Checkmk
all-in-one tool. Start for free

T

# / Why WeatherBench?

WeatherBench 2 /\/o

© Edit on GitHub

OO0O00

Why WeatherBench?

WeatherBench 2 is a framework for evaluating and comparing data-driven and traditional numerical

weather forecasting models. WeatherBench consists of:

Publicly available, cloud-optimized ground truth and baseline datasets. For a complete list, see
this page.

Open-source evaluation code. See this quick-start to explore the basic functionality or the API
docs for more detail. Since high-resolution forecast files can be large, the WeatherBench 2 code
was written with scalability in mind. See the command-line scripts based on Xarray-Beam and
this guide for running the scripts on GCP using DataFlow.

A website displaying up-to-date scores of many of the state-of-the-art data-driven and physical
approaches.

A paper describing the rationale behind the evaluation setup.

WeatherBench 2 has been built as an evolving tool for the entire community. For this reason, we
welcome any feedback (ideally, submitted as GitHub issues) or contributions. If you would like your

model to be part of WeatherBench, check out this guide.

2308.15560v1 [physics.ao-ph] 29 Aug 2023

WeatherBench 2: A benchmark for the next
generation of data-driven global weather models

Stephan Rasp!”", Stephan Hoyer!, Alexander Merose!, Ian Langmore!, Peter Battaglia?, Tyler
Russell!, Alvaro Sanchez-Gonzalez?, Vivian Yang!, Rob Carver!, Shreya Agrawal®, Matthew
Chantry?, Zied Ben Bouallegue®, Peter Dueben?®, Carla Bromberg!, Jared Sisk!, Luke
Barrington!, Aaron Bell!, and Fei Sha'

1Google Research
2Google DeepMiud
3European Centre for Medium-Range Weather Forecasts

*Corresponding author: srasp@google.com

Abstract
WeatherBench 2 is an update to the global, medium-range (1-14 day) weather forecasting

benchmark proposed by Rasp et al. (2020), designed with the aim to accelerate progress in
data-driven weather modeling. WeatherBench 2 consists of an open-source evaluation frame-
work, publicly available training, ground truth and baseline data as well as a continuously up-
dated website with the latest metrics and state-of-the-art models: https://sites.research.
google/weatherbench. This paper describes the design principles of the evaluation framework
and presents results for current state-of-the-art physical and data-driven weather models. The
metrics are based on established practices for evaluating weather forecasts at leading operational
weather centers. We define a set of headline scores to provide an overview of model performance.
In addition, we also discuss caveats in the current evaluation setup and challenges for the future
of data-driven weather forecasting.




Data is open, diagnostics are at hand — A new way to verify correctness
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The rise of data-driven we

Zied Ben-Bouallegue, Mariana C A Clare,

Oramach. Simon 1 K Lang, Baudouin Rao| vem ECMWE unveils alpha version of new ML

Data-driven modeling based on machine le{ " m Od eI

some applications. The uptake of ML methqg science blog
revolution' of weather forecasting. The com ) 13 October 2023
A K K Key facts and figure
increasing model resolution and ensemble The AIFS team
forecasts that require much lower computaq Mediaresources
standard NWP-based forecasts in an operat| yigeos
verification tools to assess to what extent a
of a forecast from one of the leading global
when verified against both the operational 4 Intelligence and Integrated)

elll ean egrateq). . .
drawbacks of ML-based forecasts. A new N ECMWEF unveils alpha version of new ML
initialization and model training. The AIFS is barely a few months old and proudly entering its alpha version. Its arrival signals model
the strengthening of ECMWF's efforts in the field of machine learning (ML), which we have
been navigating for a few years now. The AIFS forms one of three components of our new
ML project, which began in summer 2023 and aims to expand our applications of machine
learning to Earth system modelling.

ECMWEF is today launching a newborn companion to the IFS (Integrated Forecasting System),
the AIFS, our Artificial Intelligence/Integrated Forecasting System (one “I" covering both

Recent posts

Subjects: Atmospheric and Oceanic Physics (physid
Cite as: arXiv:2307.10128 [physics.ao-ph]
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[v1] Wed, 19 Jul 2023 16:51:08 UTC (18,531 KB) https://www.ecmwf.int/en/about/media-centre/aifs-blog/2023/ECMWEF-unveils-
alpha-version-of-new-ML-model
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What the forecasts are showing: Severe Cold / Sodankyla, Finland, 22 Feb 00UTC

To explore the ability of data-driven
models to capture extreme events we
examine a case study from Finland
from earlier this year, when -29C was
observed.

We find that Pangu and FourCastNet
recognised the severity of this event
earlier, however all models
underestimated the temperature
significantly, to a similar degree.

Observation — green hourglass
IFS HRES - red dot

IFS ENS - blue

Pangu — cyan dot
FourCastNet — magenta dot
Climatology — red box plot

Figure from
Zied Ben-Bouallegue

I = £ 55 W Il = = 55 ] I M o F= [+ [ %‘é|_‘==v—_




Data is open, diagnostics are at hand — A new way to verify correctness

Why was the approach of global machine learning models so successful?

» Because there was a very large unified training dataset available with ERA5 from Copernicus.
* Open benchmark datasets are needed to allow for quantitative comparisons and to bridge communities.

» Km-scale models will make a difference for the generation of training datasets.




Reproducibility — So much room for optimism

Git is standard, Cl tests are getting better, model code is unified via DSLs

Many datasets are nowadays open and Journals require open data and source code

Most machine learning models and training datasets are published with the papers as open
source

Bit-wise reproducibility may not be as important anymore when compared to the ability to fulfil
loss functions and complex diagnostics as we approach a new era in model comparison

Compute and data handling will (hopefully) be more unified as we approach federated data
and computing



The best way to check correctness is via automated tools

(@) Deterministic prediction (b) Ensemble prediction

A A |

variable
variable

> = >
time PDF time PDF
(c) Deterministic rounding error analysis (d) Ensemble-based rounding error analysis
A == (lOUble-precision forecast | A == Ouble-precision forecast
reduced-precision forecast reduced-precision forecast
Q 1 Q
Q0 el
© 1 ©
- |-
© ©
> >
> >
time PDF time PDF

Pershin, Chantry, Dueben, Hogan, Palmer ESS Open Archive 2023



The best way to check correctness is via automated tools

Double precision Mixed precision
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What is our aim today? — Imagine if...

...all model output, reanalysis data and all observations from the past and presence would be
available online via federated data storage and next to federated computing and with a uniform API
and as uniform packages

« ...there would be conventional Earth system models and machine learning models that can be used
off-the-shelf to analyse and extend those datasets

- ...all of these tools would be scalable and easy to use on laptops and supercomputers from various
computing languages

« ...there would be off-the-shelf tools to interpret physical reasoning and causality via unsupervised
machine learning, to perform uncertainty quantification, and to perform state-of-the-art visualisation

...there are off-the shelf machine learning solutions, and unit testing would be standard

We need to fight complexity and diversity of software with centralised infrastructure efforts and norms.

We need world-wide collaboration on data and infrastructure developments to achieve this.
First approaches already exist with Destination Earth, Earth-2 and EVE



How will machine learning for weather and climate evolve in a public/private partnership?

Predominantly
private sector

Symbiosis

Predominantly public
sector

Protocols and standards
e Internationally agreed climate scenarios and data
generation protocols

e Impact-driven requirement collection
e Standards for verification, validation, uncertainty

quantification

Reference data lakes

e Frequent refresh,
high-quality, federated
dataspaces

e FAIR principles

e User-driven reference text
repositories

v

Foundation models

e Interactive, text-based
interfaces

e Transparent and quality
assured adaptation to
users of weather and
climate information

v

Alontop

e Emulated prediction
systems targeting
applications with societal
relevance

e User friendly interpretation
and output provision

Physical
systems

Data

Information

Earth-system models and

observations

e Emulation of physics-based
model components

e Global-to-local observation
exploitation

e Assimilation of
observations into models

e Integration of impact
sector models and data

e Acceleration of high-
performance computing

e Data compression

Alinside

e Hybrid machine learned
-physical models

e Simulation-observation
fusion

e Research-to-production
transfer
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The rapid emergence of deep learning is attracting growing private interest in the
traditionally public enterprise of numerical weather and climate prediction. A public-
private partnership would be a pioneering step to bridge between physics- and data-
based methods, and necessary to effectively address future societal challenges.




What have we learned?

The quiet revolution (1980-2020):
« Steady investment into Earth system modelling and Earth system observations made a difference.

The digital revolution (2015-today):
» Conventional models need to be made future proof via new software and hardware standards.
» Large scale efforts make km-scale models possible today and they will make a difference.

The machine learning revolution (2022-today):

« A PhD student can write a machine learning tool that can beat the best weather prediction model in
the world based on hundreds of person years of developments.

« Data needs to be open and easy to use to make progress.

The next step: Models will be better, tools will be easier, and data/HPC will be federated
« To achieve this needs programmes such as Destination Earth, Earth-2 and EVE.

Many thanks! Peter.Dueben@ecmwf.int @PDueben



The strength of a common goal




