Lightweight Formal Methods: The What, Why, and How
John Baugh

Civil, Construction, and Environmental Engineering
North Carolina State University, Raleigh, NC
jwb@ncsu.edu

Workshop on Correctness and Reproducibility for Climate and Weather Software,
NCAR, November 9-10, 2023

North Carolina State University

Department of Civil, Construction, and Environmental Engineering
(ccee.ncsu.edu)

Enrollments: about 800 undergraduate and 300 graduate students

TR

N — A

o sl b
e
P 1my

Regular course: CE 537 Computer Methods and Applications (35 times)

Coping with Software Complexity

Historically useful strategies

* Abstraction: generalizing concrete details, i.e., preserving the
information that’s relevant in a given context.

* Separation of concerns: finding parts of a problem that can be
solved separately.

* Engineering tools: devising analysis and evaluation models,
common design templates.

e Progressive codification: identifying, organizing, and
systematizing useful patterns.

Building Models of Software

Model - a simplified representation of reality used to provide insight.

Building Models of Software

Model - a simplified representation of reality used to provide insight.

How is modeling useful?

“It’s the process of organizing knowledge about a given system.”

— B. Zeigler

Building Models of Software

Model - a simplified representation of reality used to provide insight.

How is modeling useful?

“It’s the process of organizing knowledge about a given system.”

— B. Zeigler

What are the system boundaries?

“A system is what is distinguished as a system.”

— B. Gaines

What are the boundaries?

Function

Class

Model boundaries
k/ need not align with
language structures

What Every Computer Scientist Should Know About
Floating-Point Arithmetic

DAVID GOLDBERG
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304

Floating-point arithmetic is considered an esotoric subject by many people. This is
rather surprising, because floating-point is ubiquitous in computer systems: Almost
every language has a floating-point datatype; computers from PCs to supercomputers
have floating-point accelerators; most compilers will be called upon to compile
floating-point algorithms from time to time; and virtually every operating system must
respond to floating-point exceptions such as overflow This paper presents a tutorial on
the aspects of floating-point that have a direct impact on designers of computer
systems. It begins with background on floating-point representation and rounding
error, continues with a discussion of the IEEE floating-point standard, and concludes
with examples of how computer system builders can better support floating point.

Categories and Subject Descriptors: (Primary) C.0 [Computer Systems Organization]:
General—instruction set design; D.3.4 [Programming Languages]:
Processors—compilers, optimization; G.1.0 [Numerical Analysis]: General—computer
arithmetic, error analysis, numerical algorithms (Secondary) D.2.1 [Software
Engineering]: Requirements/Specifications—languages; D.3.1 [Programming
Languages]: Formal Definitions and Theory—semantics D.4.1 [Operating Systems]:
Process Management-—synchronization

About This Talk

Lightweight formal methods

1. What are they?

e A path to formal methods and a lightweight tool called Alloy

About This Talk

Lightweight formal methods

1. What are they?

e A path to formal methods and a lightweight tool called Alloy

2. Why are they useful? Some rationale and examples:
e An extension to a storm surge code used in production
e Verifying ELLPACK and CSR sparse matrix operations

* Refinement checking a Laplace solver in Coarray Fortran

About This Talk

Lightweight formal methods

1. What are they?

e A path to formal methods and a lightweight tool called Alloy

2. Why are they useful? Some rationale and examples:
e An extension to a storm surge code used in production
e Verifying ELLPACK and CSR sparse matrix operations

* Refinement checking a Laplace solver in Coarray Fortran

3. How can we employ them?

* Alloy, heap invariants, and pipe network analysis

1. The What

As an Undergraduate

PCID = ¥ + UCT)

R222222222222222222
3333333333333333333333333

sl'ssis's §6660656650505566665

1n7n]1;177771177n7r1
| I
CORLEEH K B B B B B |
nsss‘sL

iz esls

§99589993
P hawn

The What

G000000000000000000000000Q 000

HEOUGED RGN vzluuﬁnnnnu

1n1|x|11
222222222222222222222022222222

11 l\.lll!lllll\

33333333333333333133333[33
44444444444444144444444
5 5235545555553555555555555'

|

'ilLE[E@SKBSGEGESSEEFSIBSGGB

288888085828888338883838888

?77717177]7777"7”17)7\

98993999999999999) 9993.9‘
ENSBONREESEORERN 2B RNNEA |

‘A second course in Fortran programming?”

Hollerith Card

(one line of code per card)

IBM Keypunch Machine
(used into the early ’80s)

At a National Lab

“Add a new spline type for surface patches.”

Meshed Surface Construction

The What

Turbine Blade Geometry

10

Data Abstraction?

Users Data Representation

>
)
>

B3

The What

Users Ops

Data Representation

11

Program Proving?

John Reynolds

Carnegie Mellon University
Programming language
semantics, separation logic

Syllabus from his 1980s-era course on program proving:

The fundamental goal is the ability to write concise, clearly documented, and
logically correct programs. Students will write short programs without
executing them on the computer, and these exercises will be evaluated for
style as well as logical correctness.

The What 12

Floyd-Hoare Logic

Hoare’s notation:

{P} S {Q}
where:

e S is a program statement (possibly a compound one)

* P and Q are the precondition and postcondition, respectively

The What

13

Floyd-Hoare Logic

Hoare’s notation:
{P} S {Q}
where:
e S is a program statement (possibly a compound one)
* P and Q are the precondition and postcondition, respectively
Interpretation:

If one executes S beginning with any state described by P, and
if S terminates, then S will produce a state described by Q.

The What 13

Floyd-Hoare Logic

Hoare’s notation:
{P} S {Q}
where:
e S is a program statement (possibly a compound one)
* P and Q are the precondition and postcondition, respectively
Interpretation:

If one executes S beginning with any state described by P, and
if S terminates, then S will produce a state described by Q.

Partial correctness:

A safety property. Termination is a separate argument.

The What 13

Simple Iterative Programs

Problem: Consider the program below for performing integer
multiplication by repeated addition:

{y > 0} « Precondition
let z = 0, k =0

{whileinvI: z =x xk and k < y} « Loop invariant

while k # y

k=k+1; z =2z + x

end
end
{z=xxy} « Postcondition

(since 2 =x x k and k = y)

The What

14

Iterative Loops: A Checklist

{P}
{whileinv I: the loop invariant}
while B S end

{Q}

1. Achieve I
Show that the loop invariant I is true before the loop begins

2. {IANB} S {I}
Show that the loop body, S, maintains the loop invariant

3. INB=Q
Show that the desired result is true upon exiting the loop

4. For total correctness, of course, we must also show termination

The What 15

Mechanical Verification

Generate verification conditions in Julia and discharge them using Z3,
an SMT-based theorem prover (satisfiability modulo theories):

julia> ve(P, S, Q)
4-element VectorZ3.ExprAllocated:

p
(=> (>= y 0)
(and (= 0 0) (= 0 0) (>= y 0)))

Achieve I
(=> (and (=2 0) (=k0) (>=y3 0))
(and (= z (* x k)) (<= k y)))

(IAB} S {I}
(=> (and (= z (* x k)) (<= k y) (distinct k y))
(and (= (+ z x) (*x x (+ k 1))) (k= (+ k¥ 1) y¥)))

IA-B = Q

(=> (and (= z (* x k)) (<= k y) (not (distinct k y)))
(=z (x xy)))

The What 16

Perspective

Formal methods are studied, not as an end in themselves, but to reveal
e what constitutes a precise specification of program behavior.

e what constitutes a rigorous argument that a program meets such a
specification.

The What 17

Perspective

Formal methods are studied, not as an end in themselves, but to reveal
e what constitutes a precise specification of program behavior.

e what constitutes a rigorous argument that a program meets such a
specification.

“How do we connect the dots in an argument
that a program does what it purports to do?”

The What 17

What we’re talking about is static analysis

General idea

Try and compute approximate but sound guarantees about the
behavior of a program without executing it.

Tools

Various approaches analogous to the traditional divide in logic
between proof theory and model theory.

The What

18

What we’re talking about is static analysis

General idea

Try and compute approximate but sound guarantees about the
behavior of a program without executing it.

Tools

Various approaches analogous to the traditional divide in logic
between proof theory and model theory.
 Theorem provers: deductive, axioms and inference rules

e Model checkers: finite state machines and temporal logic

* Model finders: find an instance of a logical formula

The What 18

What we’re talking about is static analysis

General idea

Try and compute approximate but sound guarantees about the
behavior of a program without executing it.

Tools

Various approaches analogous to the traditional divide in logic
between proof theory and model theory.

 Theorem provers: deductive, axioms and inference rules

— 73, CVGC5, PVS, ACL2, Coq, Isabelle, Agda, Lean

e Model checkers: finite state machines and temporal logic
— NuSMV, SPIN, TLA+, BLAST, FDR4, LTSA, UPPAAL

* Model finders: find an instance of a logical formula
— Alloy, Alloy*, aRby, ProB

The What 18

How should we employ tools?

Disappearing Formal Methods, Rushby, SRI

e formal machinery should “disappear” into familiar environments

The What

19

How should we employ tools?

Disappearing Formal Methods, Rushby, SRI

e formal machinery should “disappear” into familiar environments

Lightweight Formal Methods, Jackson, MIT, and Wing, Columbia
* direct use in modeling and analysis
* emphasis on ease of use and focused application

e intended to influence design

The What

19

How should we employ tools?

Disappearing Formal Methods, Rushby, SRI

e formal machinery should “disappear” into familiar environments

Lightweight Formal Methods, Jackson, MIT, and Wing, Columbia
* direct use in modeling and analysis
* emphasis on ease of use and focused application

e intended to influence design

“Code is a poor medium for exploring abstractions.” — Jackson

The What 19

DOI:10.1145/3338843

Exploiting a simple, expressive logic based
on relations to describe designs and automate
their analysis.

BY DANIEL JACKSON

| Alloy:

A Language and
Tool for Explormg
Software Designs

COMMUNICATIONS OF THE ACM | SEPTEMBER 2019 | VOL.62 | NO.9

https://cacm.acm.org/magazines/2019/9/238969-alloy/

The What

20

Lightweight Modeling in Alloy

A declarative modeling language
— First-order logic, relational calculus, and transitive closure

— Inspired by Z and model checkers like SMV

The What

21

Lightweight Modeling in Alloy

A declarative modeling language
— First-order logic, relational calculus, and transitive closure

— Inspired by Z and model checkers like SMV

Automatic, push-button analysis

— Supports iterative development and analysis

The What

21

Lightweight Modeling in Alloy

A declarative modeling language
— First-order logic, relational calculus, and transitive closure

— Inspired by Z and model checkers like SMV

Automatic, push-button analysis

— Supports iterative development and analysis

Compilation to SAT

— Boolean satisfiability problem: (x V y) A (x V —y) is satisfiable
when x is true

The What

21

SAT Competition Winners on the SC2020 Benchmark Suite

250 - =
kissat-2020
—=&— maple-lem-disc-cb-dl-v3-2019
- —A— maple-lem-dist-cb-2018
200 I _eee—e " T | | —e—maple-lem-dist-2017
oo “ LA P --:=" —4— maple-comsps-drup-2016

—— lingeling-2014
—=&— abedsat-2015
lingeling-2013
glucose-2012
glucose-2011
cryptominisat-2010
—— precosat-2009
—&— minisat-2008
berkmin-2003
—A— minisat-2006
rsat-2007
—o6— satelite-gti-2005
—@— zchaff-2004
—@— limmat-2002

SAT Solver
Performance

150

100

solved instances

20

| | | | ‘
Annual 00 1,000 2,000 3,000 4,000 5,000
L 41 CPU t data produced by Armin Biere and Marijn Heule
Competitions e oot 1
(2002-20)

Historically

1986 1992 1996

Greg Dennis and Rob Seater, Alloy Tutorial, alloytools.org

The What 22

Small Scope Hypothesis

A high proportion of bugs can be found by testing a component on
all inputs within a small scope.

C\ '__,.. |
p N
\
|
1
/'/
Testing: A few cases of Scope-complete: All
arbitrary size cases within a small
bound

The What 23

Alloy Case Studies

With thousands of applications in categories like:

Enterprise modeling, auctions, electronic commerce, security, access control
and security policies, feature modeling and analysis, domain specific languages
and modeling, train control, file systems, software architecture, refactoring,
program verification, databases, model-driven development, network protocols,
testing and automated test case generation, configuration and reconfiguration,
data structure repair, requirements, and teaching

https://alloytools.org/citations/case-studies.html

The What 24

Alloy Case Studies

With thousands of applications in categories like:

Enterprise modeling, auctions, electronic commerce, security, access control
and security policies, feature modeling and analysis, domain specific languages
and modeling, train control, file systems, software architecture, refactoring,
program verification, databases, model-driven development, network protocols,
testing and automated test case generation, configuration and reconfiguration,
data structure repair, requirements, and teaching

https://alloytools.org/citations/case-studies.html

And success in finding 1) safety-critical flaws in a neutron radiotherapy
installation, 2) bugs in Chord, a prominent peer-to-peer distributed protocol,
and 3) vulnerabilities in WebAuth, for Kerberos authentication, and so on.

Discovered using Alloy by a team at U. Washington,' a researcher at AT&T,? and a
research group at UC Berkeley and Stanford.>

The What 24

2. The Why

25

About Scientific Software

Challenges

* Meeting quality and reproducibility standards, productivity
[Wilson, 2006; Faulk et al., 2009]

 Numerous empirical studies of software “thwarting attempts at
repetition or reproduction of scientific results” [Storer, 2017]

* Subsequent retractions of papers in scientific journals

The Why 26

About Scientific Software

Challenges

* Meeting quality and reproducibility standards, productivity
[Wilson, 2006; Faulk et al., 2009]

 Numerous empirical studies of software “thwarting attempts at
repetition or reproduction of scientific results” [Storer, 2017]

* Subsequent retractions of papers in scientific journals

Domain characteristics
* Software developed by domain experts
e Lack of test oracles: novel findings, difficult to validate

e Focus on performance and hardware utilization

The Why 26

Paths to Improvement

Broad categories of suggested approaches [Storer, 2017]
* development processes, e.g., agile methods

e quality assurance practices including testing, inspections, and
continuous integration

* design approaches such as component architectures and design
patterns

The Why

27

Paths to Improvement

Broad categories of suggested approaches [Storer, 2017]
* development processes, e.g., agile methods

* quality assurance practices including testing, inspections, and
continuous integration

* design approaches such as component architectures and design
patterns

Among quality assurance practices, formal methods are included

e ...with the caveat that they have received considerably less
attention in the scientific programming community, possibly due
to “the additional challenge of verifying programs that manage
floating point data”

The Why 27

Is there a role for tools like Alloy?

The essence of scientific software:

e Structure

— Rich state in the form of spatial, geometric, material,
topological, and other attributes

e Behavior
— Explicit parallelism in a variety of forms

— Continuous processes encoded as finite systems

State-based formal methods in scientific computation. Baugh and Dyer. In Abstract State
Machines, Alloy, B, TLA, VDM, and Z: 6th International Conference, ABZ 2018, pages

392-396, Cham, 2018. 28

Is there a role for tools like Alloy?

The essence of scientific software:

e Structure

— Rich state in the form of spatial, geometric, material,
topological, and other attributes

e Behavior
— Explicit parallelism in a variety of forms
— Continuous processes encoded as finite systems

In principle, such characteristics are a match for state-based
formalisms like Alloy:.

But what about the reals?

State-based formal methods in scientific computation. Baugh and Dyer. In Abstract State
Machines, Alloy, B, TLA, VDM, and Z: 6th International Conference, ABZ 2018, pages

392-396, Cham, 2018. 28

Separating Concerns

We naturally think of continuous processes:
e.g., circulation of ocean currents

But what does the computational apparatus underlying ocean

circulation models really look like?

e purely analytic functions? X

e an amalgam of data structures, algorithms, and ...
numerical expressions v/

The Why

29

Separating Concerns

We naturally think of continuous processes:
e.g., circulation of ocean currents

But what does the computational apparatus underlying ocean

circulation models really look like?

e purely analytic functions? X

e an amalgam of data structures, algorithms, and ...
numerical expressions v/

scientific numerical interstitial

programs expressions machinery

The Why

The Theory Report

Scientific computing lends itself well to a refinement approach, as most
programs begin with a mathematical specification—often as a theory
report—that serves as a guide, to one extent or another, in the
implementation of high performance code.

e éﬁ F @; PROPEBTYOFTHE
DREDGING RESEARCH PROGRAM

TECHNICAL REPORT DRP-92-6

ADCIRC: AN ADVANCED THREE-DIMENSIONAL
CIRCULATION MODEL FOR SHELVES,
COASTS, AND ESTUARIES

Report 1
THEORY AND METHODOLOGY
OF ADCIRC-2DDI AND ADCIRC-3DL

The Why 30

Focused Application

PDEs
discretization || FEM, FD, FV

Finite System of Equations

structure || behavior

Specification

object model |} parallelism

Refinement

Lightweight in another sense: can draw useful conclusions about
scientific software without simultaneously reproducing the sometimes
deep, semantic proofs of numerical analysis.

The Why 31

Working with Numerical Expressions

Traditional number systems

N={0,1,2,...} the natural numbers
Z={m—n|m,n €N} the integers
Q={m/n|m,neZ,n# 0} the rational numbers
R the real numbers

C the complex numbers

The sum and product on N, Z, and QQ are those they inherit from R.

Q, R, and C are fields, but not N, since not all of its elements have a
multiplicative inverse.

NCZcQcRcC

Only a subset of properties may be needed to draw useful conclusions.

The Why 32

Predicate Abstraction

Floating point computations may determine the path of execution of a
program, e.g.,

if V,(e)>V_., then...

If two models perform the same test and are being compared, we may
substitute a common term, B, to yield a boolean program:

|
mi >~
l |

(a) (b)

The Why 33

Other Abstraction Techniques

Numerical abstract domains

* May choose an abstract domain depending on the properties that
need to be inferred.

e From abstract interpretation, a general theory of the
approximations of program semantics.

* E.g., for safety arguments, can replace with interval arithmetic, as
an overapproximation.

The Why 34

Other Abstraction Techniques

Numerical abstract domains

* May choose an abstract domain depending on the properties that
need to be inferred.

e From abstract interpretation, a general theory of the
approximations of program semantics.

* E.g., for safety arguments, can replace with interval arithmetic, as
an overapproximation.

In other words:

We may not need a decision procedure for real numbers.

(and it may not be helpful even if we have one)

The Why 34

Example 1

Verifying an Extension to ADCIRC

Formal methods and finite element analysis of hurricane storm surge: A case study in
software verification. Baugh and Altuntas. Science of Computer Programming,
158:100-121, 2018.

35

ADCIRC Users

e U.S. Army Corps of Engineers

— designing the $15B flood mitigation system in La. US Army Corps

of Engineers.

* Federal Emergency Management Agency

&) FEMA

— evaluating flood risk on U.S. East & Gulf coasts

e National Oceanic and Atmospheric Administration

— operational forecasting of tides and tropical storms

e U.S. Coast Guard

— informing operational missions during hurricanes

* Nuclear Regulatory Commission M

— assessing flood risk to coastal nuclear power plants

The Why 36

Subdomain Modeling

Explore local design alternatives

Investigate local failure scenarios

-

An exact reanalysis technique for storm surge and tides in a geographic region of

interest. Baugh, Altuntas, Dyer, & Simon. Coastal Engineering, 97, 60-77, 2015.
37

Contingent Processes

 Wetting and drying: allows the propagation of overland flows

* Derived from simplified physics, encoded with empirical rules:

4k
dy (50)
T
. | > actual
partially g” water's
wet !-.:-"'I edge
wet X—

(Medeiros and Hagen, 2013)

Result is the wet-dry status of each node: wet or dry?

The Why 38

Wetting and Drying Algorithm

0: for e in elements do > initialization: start with all elements being wet
wet, < true

1: for n in nodes do > make nodes with low water column height dry
if W, and H,, < H,;;,, then
W, « false, W' « false

2: for e in elements do > propagate wetting unless flow is slow
if ~W; for exactly one node i on e and V,(e) > V..., then
W/ « true
3: for e in elements do > let water build up on incline

find nodes i and j of e with highest water surface elevations n; and 7);
if min(Hl-, H]) < 1'2Hmin then
wet, < false

4: for n in nodes do > make landlocked nodes dry
if W' and n on only inactive elements then
W! « false
5: for n in nodes do > set the final wet-dry state for nodes
W, «—W!

The Why 39

Verification Approach

ADCIRC Extension
(Fortran) to ADCIRC
Q (0]
Full Domain Subdomain
Model (Alloy) Model (Alloy)
l £ adjust boundary
conditions on I'
assert
SameFinalStates —ps| Alloy Analyzer
within () T E
satisfied counter-
(up to bounds) ¢ > example

The Why

Representing a Mesh

sig Mesh { Vs V4
triangles: some Triangle, -
adj: Triangle — Triangle °
) i
V1 > v,
sig Triangle { \
edges: Vertex — Vertex o
}
Yo

sig Vertex {}

Require that triangles have three directed edges and be oriented, that
meshes be connected, oriented, and non-overlapping, and that cut

points be prevented.

The Why 41

A Menagerie of Mesh Topologies

Model
Diagram

Mesh

N
\ adj[Triangle]

triangles \
"

Triangle
AN
edges[Vertex |
AN
Element Vertex
slowFlow lowNode

“

Bool

/A

True

The Why

False

N

Node

W[Bool] / \

wet[Bool]

Wt[Bool]
/ He1ght

== (N

Low

High

43

Observations

Alloy facilitates experimentation with
e the amount of state needed along the interface

* the manner in which that state is used to enforce boundary
conditions

The Why

44

Observations

Alloy facilitates experimentation with
e the amount of state needed along the interface

* the manner in which that state is used to enforce boundary
conditions

Alloy’s strength is model finding

* mesh topologies are defined implicitly by declarative properties:
no algorithm need be devised to produce them (as in a testing
scenario, for instance)

The Why 44

Example 2

Sparse Matrix Computations

Bounded verification of sparse matrix computations. Dyer, Altuntas, and Baugh. In
Proceedings of the Third International Workshop on Software Correctness for HPC
Applications, Correctness’19, pages 36-43. IEEE/ACM, 2019.

45

Sparse Matrix Operations

Discretization of PDEs into finite systems of equations

e often working with sparse matrix formats: Ellpack (ELL),
Compressed Sparse Row (CSR), etc.

* interdependencies: sparse format <— solver

 direct assembly from meshes, application of boundary conditions,
manipulation by wetting and drying schemes

The Why 46

Sparse Matrix Operations

Discretization of PDEs into finite systems of equations

e often working with sparse matrix formats: Ellpack (ELL),
Compressed Sparse Row (CSR), etc.

* interdependencies: sparse format <— solver

 direct assembly from meshes, application of boundary conditions,
manipulation by wetting and drying schemes

A symbolic representation of sparse matrices, together with a new
idiom for stateful behavior

e multiplication, transpose, translation between formats, etc.

The Why 46

Verification Approach

Notion of conformance: Inclusion

0)2
A 4 LN
a[[a
C . C’
OP,.

e Data Refinement

A detailed concrete system simulates a more abstract one.

* Weak commutativity

I(C)AOP-(C,C")Aa(C,A) A a(C’',A) = OP,(A,A)

The Why

Refinement from Dense to CSR Format

(VZZZZ\
Z V, Vy Z
zZ Z V, Z

\v4zzv1]

sig Value {}
one sig Zero extends Value {}

sig Matrix {
rows, cols: Int,
vals: Int — Int — lone Value

}

The Why

TA 0 1 3| 4| 6

JA 0 1 2|1 2| 0| 3

A V, | Vi | Vs |V, |V, |V,

sig CSR {
rows, cols: Int,
IA, JA: Int — lone Int,
A: Int — lone Value

48

Observations

e Easy to extract and spot-check fragments from large code bases
— “Surrounding state” generated by model finding

— Bugs/inconsistencies found between code and documentation

The Why 49

Observations

e Easy to extract and spot-check fragments from large code bases
— “Surrounding state” generated by model finding

— Bugs/inconsistencies found between code and documentation

e Model structure similar to imperative code via tabular idiom

The Why 49

Observations

e Easy to extract and spot-check fragments from large code bases
— “Surrounding state” generated by model finding

— Bugs/inconsistencies found between code and documentation
e Model structure similar to imperative code via tabular idiom

* Most analyses take on the order of seconds to minutes

The Why 49

Example 3

Laplace Solver in Coarray Fortran

An HPC practitioner’s workbench for formal refinement checking. Benavides, Baugh,
and Gopalakrishnan. In Languages and Compilers for Parallel Computing, LCPC 2022,
pages 64-72, 2023. Springer, Lecture Notes in Computer Science, vol. 13829.

50

Jacobi Iteration

/n/y_|_1’\

4

Ui—1,5 Ui WUit1,5

i=0 1 2 3 4 9,41

Fixed point pattern for Jacobi iteration:
ukH = l(uk +uk o4k +udk)
ij g iRl T L T T

How might one verify an implementation in Coarray Fortran?

The Why

Domain Decomposition

J dimension =
JMAX JIMAX+1

| dimension
|
LN N RN N NN
LU N
J tecsvevcoee
Parallel

Decomposition / | l '

0 1 ... IMA&X/N_IMAGES+1 0 1 ... IMAY/N_IMAGES+1 O 1 ... IMAX/N_IMAGES+1

Martin, J.M.R. Testing and verifying parallel programs using data refinement. In Communicating Process Architectures 2017 & 2018,
pp. 491-500. IOS Press (2019).

52

Implementation and Approach

Coarray Fortran (Partitioned Global Address Space)
e Partitioned: programmer controls data layout across images

* Global: can directly access remote memory

The Why

53

Implementation and Approach

Coarray Fortran (Partitioned Global Address Space)
e Partitioned: programmer controls data layout across images

* Global: can directly access remote memory

Halo exchange
* Duplicate columns at the image interfaces

* Allows work in stages: computation followed by communication

The Why

53

Implementation and Approach

Coarray Fortran (Partitioned Global Address Space)
e Partitioned: programmer controls data layout across images

* Global: can directly access remote memory

Halo exchange
* Duplicate columns at the image interfaces

* Allows work in stages: computation followed by communication

Verification approach

e Data refinement, formalize what is meant by an image

The Why

53

Abstraction Function and Invariants

Relate concrete and abstract state spaces by an abstraction function a:

column

indices — [

e

B
S N N I

-l W Wo

Abstract

4 5 6

4 5 6

// a sequence of images

sig Coarray {

mseq: seq Matrix

}

The Why

Abstract

Concrete

Find concrete invariants: uniform
shape of images, overlapping
columns at the interfaces for
border exchanges, etc.

54

3. The How

55

An Engineering Application

Public water systems depend on water distribution networks to
provide an uninterrupted supply of safe drinking water.

Engineers attempt to design

NFES XA g NEEFR| |f Z4+QAUH OEHE~FNT

low-cost systems that meet the
hydraulic requirements of flow

and pressure.

EPANET is a widely-used
software system developed by
the US EPA to model and
simulate such systems. s D e

The How 56

Historical Context

In the 1930s, a breakthrough by Hardy Cross in pipe network analysis:

UNIVERSITY OF ILLINOIS
ENGINEERING EXPERIMENT STATION

BuLLETIN No. 286 NovVEMBER, 1936

ANALYSIS OF FLOW IN NETWORKS OF
CONDUITS OR CONDUCTORS

BY

Harpy Cross
PROFESSOR OF STRUCTURAL ENGINEERING

The How 57

The Hardy Cross Method

A hand method that revolutionized municipal water supply design

— Iteratively determines the flow in pipe network systems

— Nonlinear relationship between head loss and flow had been a
challenging problem

— Remains as the method taught to most civil engineering students

First computer implementation

In 1957, Hoag and Weinberg adapted the Hardy Cross
method for solving the network flow problem to the digital
computer and applied the method to the water distribution
system of the city of Palo Alto, California.

The How 58

Basic Principles

“The physical conditions controlling engineering relations often consist
of two groups of laws which are quite independent of each other.”

Conservation of mass

* Continuity of flow:

the total flow reaching any junction equals the total flow
leaving it

Conservation of energy

* Continuity of potential:

the total change in potential along any closed path is zero

The How 59

Iterative Approach

Balancing heads (or loop method)
1. Assume any distribution of flow satisfying continuity.
2. Compute in each pipe the (nonlinear) loss of head.
3. Set up in each circuit a counterbalancing flow to balance the head.

4. Compute the revised flows and repeat the procedure.

The How 60

Iterative Approach

Balancing heads (or loop method)
1. Assume any distribution of flow satisfying continuity.
2. Compute in each pipe the (nonlinear) loss of head.
3. Set up in each circuit a counterbalancing flow to balance the head.

4. Compute the revised flows and repeat the procedure.

Computational aspects?

What would it mean to verify correctness?

The How 60

Hardy Cross Verification

Problem: Would want to show ...

{whileinv I: continuity of flow} < Loop invariant
while heads in any loops are unbalanced

revise flows in each loop while maintaining invariant
end

{continuity of flow A all heads balanced} « Postcondition

Counterbalancing flow around a loop to balance the head:

_arQlet
2. rn|Qrt

AQ =

The How

61

Hardy Cross Verification

Problem: Would want to show ...

{whileinv I: continuity of flow} < Loop invariant
while heads in any loops are unbalanced

revise flows in each loop while maintaining invariant
end

{continuity of flow A all heads balanced} « Postcondition

We must show that whileinv I is indeed invariant:
Let I = continuity of flow then

I Arevise flows in each loop = I

The How

61

Hoag and Weinberg: Improved Convergence

160

140]

120 f——)

109 = ‘\

- \
80 N

— End of Modified Calculation

20

VAN
LY As

-——— End of Unmodified Calculation

Z1]

0 v Ty LOI O e e e Ty
- , Area Equals Maximum E '/

rror in @1
-40 “

-60

Values of AQ-gpm

-80

-100

-120

-140

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Number of Iterations

Fig. 3. Curves Showing Typical Fluctuation of Flow Rate Corrections for Solutions
With Modified and Unmodified Programs

The How

Prove Convergence?

As with Newton-Raphson and other nonlinear solvers, the Hardy Cross
method may fail to converge.

Does that mean verification is impossible?

The How 63

Prove Convergence?

As with Newton-Raphson and other nonlinear solvers, the Hardy Cross
method may fail to converge.

Does that mean verification is impossible?

It’s certainly possible to implement the Hardy Cross method, and the
result may be either correct or incorrect, right?

The How 63

Prove Convergence?

As with Newton-Raphson and other nonlinear solvers, the Hardy Cross

method may fail to converge.

Does that mean verification is impossible?

It’s certainly possible to implement the Hardy Cross method, and the
result may be either correct or incorrect, right?

We can recognize that convergence is a termination condition, and
prove safety:

If the program terminates, its results are correct.

The How 63

What a step in the algorithm looks like:

The How

Initial flows

=
AQ, =—21.17
AQ, =11.06

Updated flows

64

Simple Network Representation

20

¢

/@

100

Directed Graph

The How

50

30

keys

70

30

15

35

keys

(AN

keys

35

Adjacency Structure

Network Representation in Julia

nodal flows # edge flows
n = Dict() e = Dict([i => Dict() for i in 1:4])
n[1] = 100 e[1][2] = 70
n[2] = -20 e[1][4] = 30
n[3] = -50 e[2][3] = 15
n[4] = -30 e[2] [4] = 35
e[4][3] = 35

helper functions
out_edges(d, i) = dl[i]

in_edges(d, j) = Dict([i => 4'[j]

The How

for (i, d') in d
if j in keys(d')])

66

Forward and Reverse Edges

100 30

Forward edges only

The How

Forward and reverse edges

50

67

Modeling Exercise

Wish to show
Let I = continuity of flow then

I Arevise flows in each loop = I

The How

68

Modeling Exercise

Wish to show
Let I = continuity of flow then

I Arevise flows in each loop = I

And do so in the context of an object model that captures details:
e Alloy model with forward and reverse edges, edge signs, etc.
* Network representation that’s a little more complex, for efficiency

* Loop invariant I will not hold if we have conceptual errors

The How 68

Modeling Exercise

Wish to show
Let I = continuity of flow then

I Arevise flows in each loop = I

And do so in the context of an object model that captures details:
e Alloy model with forward and reverse edges, edge signs, etc.
* Network representation that’s a little more complex, for efficiency

* Loop invariant I will not hold if we have conceptual errors

Carry over the global invariants found into actual code, e.g., Julia:

“A view of object models as heap invariants”

The How 68

Working with Alloy

Atoms are Alloy’s primitive entities

— indivisible, immutable, uninterpreted

The How

69

Working with Alloy

Atoms are Alloy’s primitive entities

— indivisible, immutable, uninterpreted

Relations associate atoms with one another
— sets of tuples

— tuples are sequences of atoms

The How

69

Working with Alloy

Atoms are Alloy’s primitive entities

— indivisible, immutable, uninterpreted

Relations associate atoms with one another
— sets of tuples

— tuples are sequences of atoms

Every value in Alloy logic is a relation

— relations, sets, and scalars are all the same thing

The How 69

Alloy Model and a Snapshot

An Alloy model:
sig Attr {}

sig Node {
edge: Node->Attr
X

The How

Nodel

/ed

Attrl

Node2
ge\(NodeO] edge [NodeO]
edge [Node?2]
| |
Attr2 AttrO NodeO

Alloy Model and a Snapshot

An Alloy model:
sig Attr {}

sig Node {
edge: Node->Attr
X

Sigs define unary relations:

Attr = {(Attr0),
(Attrl),
(Attr2)}

Node = {(NodeO),
(Nodel),
(Node2) }

The How

Nodel Node2
edge\Node0] edge [NodeO]
edge [NodeZ]
Attrl Attr2 AttrO NodeO

Fields define n-ary relations:

edge = {(Nodel, NodeO, Attrl),
(Nodel, Node2, Attr2),
(Node2, NodeO, Attr0)}

Dot join and box join operators:
Nodel.edge[Node2] = {(Attr2)}

71

Alloy Model and a Snapshot

An Alloy model:
sig Attr {}

sig Node {
edge: Node->Attr

¥

Visualize adjacency:

fun adj: Node->Node {
edge.Attr
}

(a function of no arguments is
treated as a named relation, a

skolem constant)

The How

Nodel Node2
edge\Node0] edge [NodeO]

edge [Node?2]

| |

Attrl Attr2 AttrO NodeO

Nodel

/$adj
Node2 $adj

\$adj

NodeO

72

Snapshots: More Instances

The How

NodeO

$adj

Node?2

Nodel

:::::DSadj

Nodel

/dj wj

NodeO

:::::)Sadj

NodeO

:::::DSadj

$adj

Node?2

Node?2

73

Snapshots: More Instances (after adding facts)

fact {
-- adj is symmetric (7 is transpose)

adj = "adj

-- no loops (& is intersection, iden is identity)

no iden & adj

-- graph is connected (* is transitive closure)
all n: Node | Node in n.*adj

NodeO Nodel NodeO NodeO Nodel Node2
A A
$adj / $adj $adj $adj |$adj / $adj
Y
Node?2 Nodel Node3

The How 74

Nodel

$adj
NodeO Node?2 $adj
$adj |$adj
Node3
NodeO Nodel
A
$adj $adj
X
Nodel . NodeO Node?2
$adj
$adj $adj /$adj
Node? Node3
The How

NodeO Nodel
I § I §
$adj $adj |$adj
L] $ ad_j v
Node?2 Node3
Nodel
$adj
NodeO Node?2
$adj |$adj
Node3

$adj

75

Extending the Model

Pipe

extends: 1
|
edge: 1 Sree
flow: 1
flow: 1 succ [Node]
pipe: 1
sign: 1
succ: 1 NoHE
&ige [Node]
Attr
flow
extends
Edge
sign \'pe
]
Int
The How

sig Node {

flow: Int,

edge: Node->Attr
}

abstract sig Attr {}

sig Edge extends Attr {
sign: Int,

pipe: Pipe
+
sig Pipe {

flow: Int one -> State
t

flow [Int]

State

76

A Sample of Assertions (Heap Invariants)

Edge signs:
-- edge signs must be either -1 or +1

fact { all e: Edge | e.sign in -1 ++ 1 }

-- anti-parallel edges have opposite signs
fact { all a, b: Node | a->b ++ b->a in adj implies
add[a.edge[b] .sign, b.edgelal.sign] = 0

Multiplicities:

-- an edge 1is referenced by just one vertex pair
fact { all e: Edge | one edge.e }

-- a pipe is shared by two anti-parallel edges

fact { all p: Pipe | antiparallel_pair[edge.(pipe.p)] }

The How

77

Flow Computations

// Net flow at a node
fun net_flow [u: Node, s: State] : Int {
sub[u.flow, sum v: Node |
let e = u.edgelv] | mul[e.sign, e.pipe.flow.s]]
// Increment flow in a pipe
pred inc_flow [u, v: Node, q: Int, s, s": State] {

let e = u.edgelv] |
e.pipe.flow.s" = add[e.pipe.flow.s, mulle.sign, ql]

The How 78

Verifying the Loop Invariant

-- balancing heads in an arbitrary loop
pred revise_flows [s, s": State] {
some i: Int | inc_flow[Cycle.succ, i, s, s"]

-- loop invariant: continuity of flow
pred inv [s: State] {
all u: Node | net_flow[u, s] =0

-- check and see if the invariant holds
assert invariant_holds {
let s = so/first, s" = s.next |
inv[s] and revise_flows[s, s"] implies inv[s"]

The How

79

Results of the Exercise

An object model and associated heap invariants that allow us to
conclude that continuity of flow is assured.

The How

80

Results of the Exercise

An object model and associated heap invariants that allow us to
conclude that continuity of flow is assured.

Though a simple problem, it demonstrates that

a) Much can be done without a general theory of reals

— integers are a ring, and that’s all we need (no need for

multiplicative inverses here)

The How

80

Results of the Exercise

An object model and associated heap invariants that allow us to
conclude that continuity of flow is assured.

Though a simple problem, it demonstrates that

a) Much can be done without a general theory of reals

— integers are a ring, and that’s all we need (no need for

multiplicative inverses here)

b) Boundaries of declarative models can easily grow and shrink

— we specify what loops are, but could just as easily define how to
construct them (and check the construction process)

The How 80

Conclusion

Lightweight formal methods

Are they useful?

81

Conclusion

Lightweight formal methods
Are they useful?

(all tools are useful, in some context, or they’re not tools)

81

Conclusion

Lightweight formal methods
Are they useful?

(all tools are useful, in some context, or they’re not tools)

Okay, are they useful enough?

Versatile, so proficiency can be developed and maintained.

81

Conclusion

Lightweight formal methods
Are they useful?

(all tools are useful, in some context, or they’re not tools)

Okay, are they useful enough?

Versatile, so proficiency can be developed and maintained.

Complementary to historically useful strategies:

Abstraction, separation of concerns, engineering tools, and
progressive codification

81

Some Books Informing This Perspective ... Thank You!

Algorithmics

The Spirit of Computing

THIRD EDITION

rDavid Harel

Yishai Feldman

Michael J. C. Gordon
Programming
Language
Theory and its
Implementation

C.AR.HOARE SERIES EDITOR

Prentice-Hall Series in Automatic Computation
I- - I-

programming
edsger

llijl‘(’élla
For a long time I have wanted to write a
book somewhat along the lines of this one: on
the one hand 1 knew that programs could have
a compelling and deep logical beauty, on the
other hand I was forced to admit that most
programs are presented in a way fit for mechan-

ical execution but, even if of any beauty at all,
totally unfit for human appreciation‘,,

Structure and
Interpretation
of Computer

Harold Abelson and

Gerald Jay Sussman
with Julie Sussman

Program

John C. Reynolds
The Cratt of Development

Programming in Java

Abstraction,
Specification, and
Object-Oriented Design

Barbara Liskoyv
with John Guttag

C.A.R.HOARE SERIES EDITOR

‘ THOMAS H. CORMEN
Y CHARLES E. LEISERSON

‘ | RONALD L. RIVEST
|

\ [CLIFFORD STEIN

\ N\ |

gof%re_ Abstractions

Revised edition

Daniel Jackson

INTRODUCTION TO

ALGORITHMS

82

Thank You

83

Scientific Computing

Superscalar sequence Map Geometric decomposition Gather Reduction

012345¢67
0000090 gpeoercBEsceed PYRIRIRY
OCgooooo BEOACOE
O00OO00oBo0o .
@jeje)e]e)e]e]e) catter
00000000 §%%2§2 &
O00O00oBo0o
cocodoog 95%79%¢Cleseees
00000000
Speculative selection Partiti Category reduction Recurrence _ﬁ
= olalalnlalalalo)
== - 00000000 HEEOOODD
00000000 000oloooo 33353353
00000000 O0o0oloocoo
Fork—join Pipeline 00000000 \ _h _h
00000000 1 00000000
O000O0Ooo0o
00000000 POO@ Sxpand
%% 20090U0D
Pack Spii [TTTT L]
CN0ODODDE PPN ODOO@ Bx x QIO x
GECoEMHEH @EOOEBEH) 8
i} 1 U
X X X

[[]
GoreEH®OE BCOCO00000J

McCool, M., Reinders, J., & Robison, A. (2012). Structured parallel programming: patterns for efficient computation. Elsevier.

84

Dijkstra’s Perspective

The role of specifications: they act as a logical firewall between
two different concerns.

e The pleasantness problem: the question of whether an engine
meeting the specification is the engine we would like to have.

* The correctness problem: the question of how to design an engine
meeting the specification.

See EWD 1058:

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1058.html

85

Dijkstra’s Perspective

The role of specifications: they act as a logical firewall between
two different concerns.

e The pleasantness problem: the question of whether an engine
meeting the specification is the engine we would like to have.
— “Are we building the right product?” (Boehm, 1979)
* The correctness problem: the question of how to design an engine

meeting the specification.

— “Are we building the product right?”

See EWD 1058:

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1058.html

85

Polemics and Detractors

PROGRAM VERIFICATION: THE VERY IDEA

The notion of program verification appears to trade upon an equivocation.
Algorithms, as logical structures, are appropriate subjects for deductive
verification. Programs, as causal models of those structures, are not. The
success of program verification as a generally applicable and completely
reliable method for guaranteeing program performance is not even a
theoretical possibility.

JAMES H. FETZER

1048 Communications of the ACM September 1988 Volume 31 Number 9

86

Floating Point in the Larch Prover

FloatingPoint (smallest, largest,

gap, rational): trait
assumes FPAssumptions
includes
Rational,
TotalOrder (F)
introduces

mag: F — Q
approx: F, Q, Q — Bool
-, abs, ___1: F —» F
+ * -, / :F, F - F
asserts
F generated by float

V £, f1, f2: F, g, t: O

f1 < £f2 == rational (fl) < rational(£f2);

mag (f) == abs(rational (f)) ;
approx(f, g, t) ==
abs(gq) < largest
= abs(rational(f) - q)
< (smallest +

(gap* (mag(f) + abs(g) + t)));

87

Wet-Dry States

Ry

element state
depends on: ; ‘
— incident nodes

I node state

depends on: 7\

— water surface elevation

— incident elements and adjacent nodes

88

Physical Properties of Elements

0: for e in elements do sig Element extends Triangle {
wet, « true wet: Bool one — State
1: for n in nodes do J /\
if W, and H, < H,;;,, then . accommodate
W, « false, W' « false sig State {} state changes

2: for e in elements do
if -W; for one node i on e and V,,(e) > V,,;,, then
Wit «— true

3: for e in elements do
find nodes i and j of e with highest water surface
if min(Hi, H]) < 1'2Hmin then
wet, « false
4: for n in nodes do

if er and n on only inactive elements then
W! « false

5: for n in nodes do
W, « W!

Physical Properties of Elements

0: for e in elements do sig Element extends Triangle {

wet, < true wet: Bool one — State,
slowFlow: one Bool
lowNode: Node

1: for n in nodes do
if W, and H,, < H,,,;,, then
W, « false, W' « false J

2: for e in elements do
if =W, for one node 1 on e and V,(e) > V,,;,, then
W « true

3: for e in elements do
find nodes i and j of e with highest water surface
if min(H;, H;) < 1.2H;, then
wet, « false
4: for n in nodes do

if er and n on only inactive elements then
W! « false

5: for n in nodes do
W, « W!

90

Physical Properties of Nodes

0: for e in elements do sig Node extends Vertex {
wet, < true W, Wt: Bool one — State,

1: for n in nodes do H: Height

if W, and H,, < H,,,;,, then J

W, « false, W' « false
abstract sig Height {}

2: for e in elements do

if =W, for one nodeione ... then one sig Low, Med, High
t
W« true extends Height {}

3: for e in elements do

find nodes i and j of e with highest water surface
if min(Hl’, H]) < 1'2Hmin then
wet, « false
4: for n in nodes do

if Wnt and n on only inactive elements then
W! « false

5: for n in nodes do
W, «W;

91

Dynamics: Wetting and Drying

* Model each part of the algorithm by a predicate defining the state
change

* Form a trace by chaining together parts and thereby constraining
intermediate states

* Consider only a single time step:

— begin with arbitrary wet-dry states, as though they had been
produced in a prior time step

— check correctness condition at the end of one step

92

Dynamics: Wetting and Drying

—— nodal wetting (propagate wetness across triangle if flow is not slow)
pred part2 [m: Mesh, s, s': State] {
noElementChange[m, s, s']
all n: m.nodes | n.W.s' = n.W.s
and n.Wt.s' = (make wet[m, n, s] implies True else n.Wt.s) }

— — define the conditions that cause a node to become wet
pred make wet [m: Mesh, n: Node, s: State] {

some e: m.elements | e.slowFlow = False and loneDryNode[n, e, s] }

pred loneDryNode [n: Node, e: Element, s: State] {
n in dom[e.edges] and n.W.s = False and wetNodes[e, s] = 2 }

fun wetNodes [e: Element, s: State]: Int {
#(dom[e.edges] <: W).s.True }

93

Results of the Exercise

Final wet-dry states from boundary nodes in a full run can be used to
impose intermediate wet-dry states in subdomain runs

* No need to record intermediate wet-dry states of nodes and
elements

94

Results of the Exercise

Final wet-dry states from boundary nodes in a full run can be used to
impose intermediate wet-dry states in subdomain runs

* No need to record intermediate wet-dry states of nodes and
elements

Thus, for actual simulations in ADCIRC, we can record a minimal
amount of data and impose it as boundary conditions

 This is in fact how subdomain modeling is implemented in
ADCIRC beginning with v51.42

94

Tabular Pattern for Nested, Bounded Iteration

Pattern defines an iteration table (iter) and time-indexed scalar

variables (x, y), where 1) and «w define loop bounds:

some iter: Int— Int— Int, x, y, ...: Int— univ {
table[{i: ¢, j: w | ...}, iter]
all i: 1 |
all j: w |
let t = iter[i][j], t' = t.add[1] {
x[t]= ... x[t]...
y[t]= ... y[t]...
}
}

Pseudo-code:

for i in ¢y do
for j in w do

X=...X...
y=...y..

95

Dense and CSR Transpose Fragments

pred transpose [m, m': Matrix] {
m'.rows = m.cols
m'.cols = m.rows
m'.vals = { j, i: Int, v: Value | i — j — vin m.vals }

}

pred transpose [c, c': CSR] {

all i: range[c.rows] |
all k: range[c.IA[i], c.IA[i.add[1]]] |
let t = iter[i][k], t' = t.add[1],

}

j = c.JA[K],
nxt = c.IA[t][j] {
c.A[nxt] = c.A[k]
c JA[nxt] =i
c.IA[t'] = c.IA[t] ++ j — nxt.add[1]

Pseudo-code:

for i in range(c.rows) do
for k in range(c.IA[i], c.IA[i+1]) do

j«— cJA[k]

nxt « ¢ .IA[j]

¢ Alnxt] « c.A[k]
¢ JA[nxt] « i
CIA[j] e« nxt+1

96

Loss of Head

We assume that we know the law determining the loss of head in any

length of pipe for a given flow. This law usually takes the form
h=CV"

where h is the change in head accompanying flow in any length of
pipe, C is the loss in the pipe for unit velocity of flow, and V is the
velocity. Since the quantity of water flowing in the pipe is AV, this
relation may be rewritten

h=rQ"

where r is the loss of head in the pipe for unit quantity of flow. The
quantity r depends on the length and diameter of pipe and on its
roughness.

The problem is to find the amount of water flowing in each pipe.

97

Further Details from the Paper

b) Compute in each pipe the loss of head h = rQ".

With due attention to sign (direction of potential drop), compute
the total head loss around each elementary closed circuit

2h=2,r¢

(c) Compute also in each such closed circuit the sum of the quantities
R = nrQ™D without reference to sign.

(d) Set up in each circuit a counterbalancing flow to balance the head
in that circuit (to make > rQ™ = 0) equal to

Z rQ™ (with due attention to direction of flow)

A =
Z nrQ(-1) (without reference to direction of flow)

(e) Compute the revised flows and repeat the procedure.

98

