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Coping with Software Complexity

Historically useful strategies

• Abstraction: generalizing concrete details, i.e., preserving the
information that’s relevant in a given context.

• Separation of concerns: finding parts of a problem that can be
solved separately.

• Engineering tools: devising analysis and evaluation models,
common design templates.

• Progressive codification: identifying, organizing, and
systematizing useful patterns.

3



Building Models of Software

Model - a simplified representation of reality used to provide insight.

How is modeling useful?

“It’s the process of organizing knowledge about a given system.”

– B. Zeigler

What are the system boundaries?

“A system is what is distinguished as a system.”

– B. Gaines
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What are the boundaries?

Function

Module

 Class 
Model boundaries 
need not align with 
language structures
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About This Talk

Lightweight formal methods

1. What are they?

• A path to formal methods and a lightweight tool called Alloy

2. Why are they useful? Some rationale and examples:

• An extension to a storm surge code used in production

• Verifying ELLPACK and CSR sparse matrix operations

• Refinement checking a Laplace solver in Coarray Fortran

3. How can we employ them?

• Alloy, heap invariants, and pipe network analysis
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1. The What
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As an Undergraduate

“A second course in Fortran programming?”

Hollerith Card
(one line of code per card)

IBM Keypunch Machine
(used into the early ’80s)
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At a National Lab

“Add a new spline type for surface patches.”

Meshed Surface Construction Turbine Blade Geometry
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Data Abstraction?

Data Representation Data RepresentationOpsUsersUsers
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Program Proving?

John Reynolds
Carnegie Mellon University

Programming language
semantics, separation logic

Syllabus from his 1980s-era course on program proving:

The fundamental goal is the ability to write concise, clearly documented, and
logically correct programs. Students will write short programs without
executing them on the computer, and these exercises will be evaluated for
style as well as logical correctness.
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Floyd-Hoare Logic

Hoare’s notation:

{P} S {Q}

where:

• S is a program statement (possibly a compound one)

• P and Q are the precondition and postcondition, respectively

Interpretation:

If one executes S beginning with any state described by P, and
if S terminates, then S will produce a state described by Q.

Partial correctness:

A safety property. Termination is a separate argument.
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Simple Iterative Programs

Problem: Consider the program below for performing integer
multiplication by repeated addition:

{y ≥ 0} ← Precondition
let z = 0, k = 0

{whileinv I : z = x × k and k ≤ y} ← Loop invariant
while k ̸= y

k = k + 1; z = z + x
end

end
{z = x × y} ← Postcondition

(since z = x × k and k = y)

The What 14



Iterative Loops: A Checklist

{P}
{whileinv I : the loop invariant}
while B S end
{Q}

1. Achieve I
Show that the loop invariant I is true before the loop begins

2. {I ∧ B} S {I}
Show that the loop body, S, maintains the loop invariant

3. I ∧¬B⇒Q
Show that the desired result is true upon exiting the loop

4. For total correctness, of course, we must also show termination

The What 15



Mechanical Verification

Generate verification conditions in Julia and discharge them using Z3,
an SMT-based theorem prover (satisfiability modulo theories):

julia> vc(P, S, Q)
4-element VectorZ3.ExprAllocated:

P
(=> (>= y 0)

(and (= 0 0) (= 0 0) (>= y 0)))

Achieve I
(=> (and (= z 0) (= k 0) (>= y 0))

(and (= z (* x k)) (<= k y)))

{I ∧ B} S {I}
(=> (and (= z (* x k)) (<= k y) (distinct k y))

(and (= (+ z x) (* x (+ k 1))) (<= (+ k 1) y)))

I ∧¬B ⇒ Q
(=> (and (= z (* x k)) (<= k y) (not (distinct k y)))

(= z (* x y)))

The What 16



Perspective

Formal methods are studied, not as an end in themselves, but to reveal

• what constitutes a precise specification of program behavior.

• what constitutes a rigorous argument that a program meets such a
specification.

“How do we connect the dots in an argument
that a program does what it purports to do?”
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What we’re talking about is static analysis

General idea

Try and compute approximate but sound guarantees about the
behavior of a program without executing it.

Tools

Various approaches analogous to the traditional divide in logic
between proof theory and model theory.

• Theorem provers: deductive, axioms and inference rules

– Z3, CVC5, PVS, ACL2, Coq, Isabelle, Agda, Lean

• Model checkers: finite state machines and temporal logic

– NuSMV, SPIN, TLA+, BLAST, FDR4, LTSA, UPPAAL

• Model finders: find an instance of a logical formula

– Alloy, Alloy*, αRby, ProB
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How should we employ tools?

Disappearing Formal Methods, Rushby, SRI

• formal machinery should “disappear” into familiar environments

Lightweight Formal Methods, Jackson, MIT, and Wing, Columbia

• direct use in modeling and analysis

• emphasis on ease of use and focused application

• intended to influence design

“Code is a poor medium for exploring abstractions.” – Jackson
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https://cacm.acm.org/magazines/2019/9/238969-alloy/
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Lightweight Modeling in Alloy

A declarative modeling language

– First-order logic, relational calculus, and transitive closure

– Inspired by Z and model checkers like SMV

Automatic, push-button analysis

– Supports iterative development and analysis

Compilation to SAT

– Boolean satisfiability problem: (x ∨ y)∧ (x ∨¬y) is satisfiable
when x is true
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Greg Dennis and Rob Seater, Alloy Tutorial, alloytools.org

SAT Solver
Performance

Annual
Competitions

(2002–20)

Historically
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SAT Competition Winners on the SC2020 Benchmark Suite
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maple-lcm-dist-cb-2018
maple-lcm-dist-2017
maple-comsps-drup-2016
lingeling-2014
abcdsat-2015
lingeling-2013
glucose-2012
glucose-2011
cryptominisat-2010
precosat-2009
minisat-2008
berkmin-2003
minisat-2006
rsat-2007
satelite-gti-2005
zchaff-2004
limmat-2002

data produced by Armin Biere and Marijn Heule

  

SAT performance
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Small Scope Hypothesis

A high proportion of bugs can be found by testing a component on
all inputs within a small scope.
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Alloy Case Studies

With thousands of applications in categories like:

Enterprise modeling, auctions, electronic commerce, security, access control
and security policies, feature modeling and analysis, domain specific languages

and modeling, train control, file systems, software architecture, refactoring,
program verification, databases, model-driven development, network protocols,
testing and automated test case generation, configuration and reconfiguration,

data structure repair, requirements, and teaching

https://alloytools.org/citations/case-studies.html

And success in finding 1) safety-critical flaws in a neutron radiotherapy
installation, 2) bugs in Chord, a prominent peer-to-peer distributed protocol,
and 3) vulnerabilities in WebAuth, for Kerberos authentication, and so on.

Discovered using Alloy by a team at U. Washington,1 a researcher at AT&T,2 and a

research group at UC Berkeley and Stanford.3
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2. The Why
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About Scientific Software

Challenges

• Meeting quality and reproducibility standards, productivity
[Wilson, 2006; Faulk et al., 2009]

• Numerous empirical studies of software “thwarting attempts at
repetition or reproduction of scientific results” [Storer, 2017]

• Subsequent retractions of papers in scientific journals

Domain characteristics

• Software developed by domain experts

• Lack of test oracles: novel findings, difficult to validate

• Focus on performance and hardware utilization

The Why 26
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Paths to Improvement

Broad categories of suggested approaches [Storer, 2017]

• development processes, e.g., agile methods

• quality assurance practices including testing, inspections, and
continuous integration

• design approaches such as component architectures and design
patterns

Among quality assurance practices, formal methods are included

• . . . with the caveat that they have received considerably less
attention in the scientific programming community, possibly due
to “the additional challenge of verifying programs that manage
floating point data”
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State-based formal methods in scientific computation. Baugh and Dyer. In Abstract State
Machines, Alloy, B, TLA, VDM, and Z: 6th International Conference, ABZ 2018, pages
392–396, Cham, 2018.

Is there a role for tools like Alloy?

The essence of scientific software:

• Structure

– Rich state in the form of spatial, geometric, material,
topological, and other attributes

• Behavior

– Explicit parallelism in a variety of forms

– Continuous processes encoded as finite systems

In principle, such characteristics are a match for state-based
formalisms like Alloy.

But what about the reals?
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Separating Concerns

We naturally think of continuous processes:

e.g., circulation of ocean currents

But what does the computational apparatus underlying ocean
circulation models really look like?

• purely analytic functions? ✗

• an amalgam of data structures, algorithms, and . . .
numerical expressions ✓

scientific
programs

=
numerical

expressions
+

interstitial
machinery
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The Theory Report

Scientific computing lends itself well to a refinement approach, as most
programs begin with a mathematical specification—often as a theory
report—that serves as a guide, to one extent or another, in the
implementation of high performance code.

The Why 30



Focused Application

PDEs

discretization ⇓ FEM, FD, FV

Finite System of Equations

structure ⇓ behavior

Specification

object model ⇓ parallelism

Refinement

Lightweight in another sense: can draw useful conclusions about
scientific software without simultaneously reproducing the sometimes
deep, semantic proofs of numerical analysis.
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Working with Numerical Expressions

Traditional number systems

N= {0,1, 2, . . .} the natural numbers
Z= {m− n | m, n ∈ N} the integers
Q= {m/n | m, n ∈ Z, n ̸= 0} the rational numbers
R the real numbers
C the complex numbers

The sum and product on N, Z, and Q are those they inherit from R.

Q, R, and C are fields, but not N, since not all of its elements have a
multiplicative inverse.

N ⊂ Z ⊂Q ⊂ R ⊂ C

Only a subset of properties may be needed to draw useful conclusions.
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Predicate Abstraction

Floating point computations may determine the path of execution of a
program, e.g.,

if Vss(e)> Vmin then . . .

If two models perform the same test and are being compared, we may
substitute a common term, B, to yield a boolean program:

B YES

NO

B YES

NO

(a) (b)

The Why 33



Other Abstraction Techniques

Numerical abstract domains

• May choose an abstract domain depending on the properties that
need to be inferred.

• From abstract interpretation, a general theory of the
approximations of program semantics.

• E.g., for safety arguments, can replace with interval arithmetic, as
an overapproximation.

In other words:

We may not need a decision procedure for real numbers.

(and it may not be helpful even if we have one)

The Why 34
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Formal methods and finite element analysis of hurricane storm surge: A case study in
software verification. Baugh and Altuntas. Science of Computer Programming,
158:100–121, 2018.

Example 1

Verifying an Extension to ADCIRC

35



ADCIRC Users

• U.S. Army Corps of Engineers

– designing the $15B flood mitigation system in La.

• Federal Emergency Management Agency

– evaluating flood risk on U.S. East & Gulf coasts

• National Oceanic and Atmospheric Administration

– operational forecasting of tides and tropical storms

• U.S. Coast Guard

– informing operational missions during hurricanes

• Nuclear Regulatory Commission

– assessing flood risk to coastal nuclear power plants
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An exact reanalysis technique for storm surge and tides in a geographic region of
interest. Baugh, Altuntas, Dyer, & Simon. Coastal Engineering, 97, 60–77, 2015.

Subdomain Modeling

Explore local design alternatives

Investigate local failure scenarios

37



Contingent Processes

• Wetting and drying: allows the propagation of overland flows

• Derived from simplified physics, encoded with empirical rules:REVIEW OF WETTING AND DRYING ALGORITHMS FOR NUMERICAL TIDAL FLOW MODELS 475

Figure 1. Unstructured triangular mesh illustrating wetting front in reality and as seen by numerical model.

stability (convergence, spurious oscillations), and scientific accuracy. As with any computer mod-
eling technique, the closer the solution describes the physics, the more computationally intensive it
is. Previous reviews of WD algorithms have stressed the computational solutions to the issue, rather
than the capture of the physical processes involved [19]. As stated above, implementing a numer-
ically stable solution that does not introduce spurious noise into the results is indeed important;
however, a purely computational remedy that is based loosely or not at all on the physics has the
potential to induce artificial damping or dissipation of solution fluctuations. Tchamen and Kahawita
[20] provided an excellent description of the problems faced by model developers and the generic
algorithm used to address them. Balzano [21] evaluated seven WD schemes implemented in the
same model, analyzed the shortcomings evident in the one-dimensional test cases, and proposed
three new schemes. D’Alpaos and Defina [19] also presented a general review of WD algorithms as
a foundation to their set of two-dimensional shallow flow equations modified to handle partially wet
elements [22].

This paper presents a review of WD algorithms in popular coastal and estuarine models based on
the shallow water equations. This review is different in scope from previous reviews (listed above) in
that the focus is on models typically used to model tidal hydrodynamics and storm surge in contem-
porary studies. Although Balzano [21] presented a review of WD algorithms in use from 1968–1993,
and D’Alpaos and Defina [19] included more current schemes, a comprehensive review and char-
acterization of contemporary WD algorithms has not been carried out. The models reviewed all
operate on structured or unstructured numerical grids that are temporally and spatially constant (i.e.
fixed). For the purposes of this paper, moving grid boundary [23–25] and adaptive mesh-generation
/ advancing front [26, 27] approaches are not considered. Although highly suited to the problem of
wetting and drying, they are omitted here in favor of models that are more commonly applied to tidal
circulation modeling. An outcome from this review is a categorization of WD algorithms. Thus, the
paper is structured around the four categories identified in the review (please refer to Figure 2 for
illustrations of these groups): (i) those that specify a thin film of fluid over the entire domain to com-
pute the equations of mass and momentum conservation over the entire domain at every time step;
(ii) those that employ checking routines to determine if an element or node is wet, dry or potentially
one of the two, subsequently removing dry elements from the computational domain; (iii) those that
extrapolate the fluid depth from wet nodes onto dry nodes and compute the velocities in the newly
wet element; and (iv) those that allow the model to tolerate negative water depths and permit the
simulated water surface to extend below ground. Special emphasis is given to each category’s appli-
cation to specific numeric schemes, namely finite difference (FD), finite element (FE), and finite
volume (FV) methods along with their performance in conserving mass and capturing the relevant
physics such as the advance and recession of the wetting front. Lastly, a summary is presented along
with a brief discussion of future research related to this topic.

2. THIN FILM ALGORITHMS

As stated previously, thin film algorithms specify a viscous sublayer of fluid over the entire com-
putational domain. This allows all nodes, elements, and cells to be included in the computational

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:473–487
DOI: 10.1002/fld

wet

dry

partially actual
water’s
edgewet

(Medeiros and Hagen, 2013)

Result is the wet-dry status of each node: wet or dry?
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Wetting and Drying Algorithm

0: for e in elements do ▷ initialization: start with all elements being wet
wete ← true

1: for n in nodes do ▷ make nodes with low water column height dry
if Wn and Hn < Hmin then

Wn← false, W t
n ← false

2: for e in elements do ▷ propagate wetting unless flow is slow
if ¬Wi for exactly one node i on e and Vss(e)> Vmin then

W t
i ← true

3: for e in elements do ▷ let water build up on incline
find nodes i and j of e with highest water surface elevations ηi and η j

if min(Hi , H j)< 1.2Hmin then
wete ← false

4: for n in nodes do ▷ make landlocked nodes dry
if W t

n and n on only inactive elements then
W t

n ← false

5: for n in nodes do ▷ set the final wet-dry state for nodes
Wn←W t

n
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Verification Approach

ADCIRC 
(Fortran)

Full Domain 
Model (Alloy)

Alloy Analyzer

Subdomain 
Model (Alloy)

Extension 
to ADCIRC

assert 
SameFinalStates

within ? I

? ? I

satisfied          
(up to bounds)

adjust boundary 
conditions on ?

counter- 
example

T F
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Representing a Mesh

sig Mesh {
triangles: some Triangle,
adj: Triangle→ Triangle
}

sig Triangle {
edges: Vertex→ Vertex
}

sig Vertex {}

t0

t1

t2

v0

v1 v2

v3 v4

Require that triangles have three directed edges and be oriented, that
meshes be connected, oriented, and non-overlapping, and that cut
points be prevented.
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A Menagerie of Mesh Topologies
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Model
Diagram

Mesh

Triangle

Element

Bool

True False

Vertex

Node

State

Height

Low Med High

slowFlow

wet[Bool]

W[Bool]

Wt[Bool]

adj[Triangle]
triangles

edges[Vertex]

lowNode

H
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Observations

Alloy facilitates experimentation with

• the amount of state needed along the interface

• the manner in which that state is used to enforce boundary
conditions

Alloy’s strength is model finding

• mesh topologies are defined implicitly by declarative properties:
no algorithm need be devised to produce them (as in a testing
scenario, for instance)
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Bounded verification of sparse matrix computations. Dyer, Altuntas, and Baugh. In
Proceedings of the Third International Workshop on Software Correctness for HPC
Applications, Correctness’19, pages 36–43. IEEE/ACM, 2019.

Example 2

Sparse Matrix Computations
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Sparse Matrix Operations

Discretization of PDEs into finite systems of equations

• often working with sparse matrix formats: Ellpack (ELL),
Compressed Sparse Row (CSR), etc.

• interdependencies: sparse format↔ solver

• direct assembly from meshes, application of boundary conditions,
manipulation by wetting and drying schemes

A symbolic representation of sparse matrices, together with a new
idiom for stateful behavior

• multiplication, transpose, translation between formats, etc.
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Verification Approach

Notion of conformance: Inclusion

A A′

C C ′

α α

OPA

OPC

• Data Refinement

A detailed concrete system simulates a more abstract one.

• Weak commutativity

I(C)∧OPC(C , C ′)∧α(C , A)∧α(C ′, A′)⇒ OPA(A, A′)
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Refinement from Dense to CSR Format

V2 Z Z Z

Z V1 V3 Z

Z Z V2 Z

V4 Z Z V1





























sig Value {}
one sig Zero extends Value {}

sig Matrix {
rows, cols: Int,
vals: Int→ Int→ lone Value
}

0 1 3 4 6

0 1 2 2 0 3

V2 V1 V3 V2 V4 V1

IA

JA

A

sig CSR {
rows, cols: Int,
IA, JA: Int→ lone Int,
A: Int→ lone Value
}
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Observations

• Easy to extract and spot-check fragments from large code bases

– “Surrounding state” generated by model finding

– Bugs/inconsistencies found between code and documentation

• Model structure similar to imperative code via tabular idiom

• Most analyses take on the order of seconds to minutes
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An HPC practitioner’s workbench for formal refinement checking. Benavides, Baugh,
and Gopalakrishnan. In Languages and Compilers for Parallel Computing, LCPC 2022,
pages 64–72, 2023. Springer, Lecture Notes in Computer Science, vol. 13829.

Example 3

Laplace Solver in Coarray Fortran
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Jacobi IterationNumerical Solution: Finite Di↵erences

i = 0 1 2 3 4 nx + 1
j = 0

1

2

3

4

ny + 1

ui�1,j

ui,j�1

uij ui+1,j

ui,j+1

“5-point finite-di↵erence stencil”

�
✓
@2u

@x2
+

@2u

@y2

◆
⇡

✓
ui+1,j � 2uij � ui�1,j

�x2

+
ui,j+1 � 2uij � ui,j�1

�y2

◆
= fij

i = 1 . . . nx

j = 1 . . . ny

• Here, the unknowns are u = [u11, u21, . . . , unx,ny ]
T .

• This particular (so-called natural or lexicographical) ordering gives rise to
a banded system matrix for u.

• As in the 1D case, the error is O(�x2) + O(�y2) = O(h2) if we take �x = �y =: h.

• Assuming for simplicity that N = nx = ny, we have n = N2 unknowns.

- 

Fixed point pattern for Jacobi iteration:

uk+1
i j =

1
4
(uk

i+1, j + uk
i−1, j + uk

i, j+1 + uk
i, j−1)

How might one verify an implementation in Coarray Fortran?
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Martin, J.M.R. Testing and verifying parallel programs using data refinement. In Communicating Process Architectures 2017 & 2018,
pp. 491–500. IOS Press (2019).

Domain Decomposition4 J.M.R. Martin / Testing and Verifying Parallel Programs Using Data Refinement 

 
Figure 1.  Data decomposition for Parallel Laplace Solver. 

 
Each iteration involves a computation phase, then a communication phase, and finally 

a global synchronization. We adopt the BSP term of ‘super step’ to refer to portions of a 
distributed execution between global synchronization events. The code follows: 

 
SUBROUTINE PAR_ITERATION (U, V, IMAX, JMAX, N_IMAGES) 
! Coarray versions of U and V arrays  
REAL*8 :: U(0:IMAX+1, 0:JMAX/N_IMAGES+1)[*],  
          V(0:IMAX+1, 0:JMAX/N_IMAGES+1)[*] 
! Variables and abstraction function to be used for unit testing 
REAL*8 :: V_IJ, ULEFT, URIGHT, UABOVE, UBELOW 
INTERFACE  
  REAL*8 FUNCTION ABSTRACTION(UV, I, J, IMAX, JMAX, N_IMAGES) 
    REAL*8 :: UV(0:IMAX+1, 0:JMAX/N_IMAGES+1)[*] 
  END FUNCTION ABSTRACTION 
END INTERFACE 
INTEGER PARTITION_WIDTH, IMAGE, IMAX, JMAX, N_IMAGES 
PARTITION_WIDTH = JMAX/N_IMAGES 
! Distributed calculation 
IMAGE = this_image() ! Coarray function which returns image number 
DO J = 1, JMAX/N_IMAGES 
  DO I = 1, IMAX 
     V(I,J)[IMAGE] = 0.25 * ( U(I-1,J)[IMAGE] + U(I+1,J)[IMAGE] +   
                              U(I,J-1)[IMAGE] + U(I,J+1)[IMAGE] ) 
  END DO 
END DO 

CPA 2018 preprint – the proceedings version will have other page numbers and may have minor di↵erences.
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Implementation and Approach

Coarray Fortran (Partitioned Global Address Space)

• Partitioned: programmer controls data layout across images

• Global: can directly access remote memory

Halo exchange

• Duplicate columns at the image interfaces

• Allows work in stages: computation followed by communication

Verification approach

• Data refinement, formalize what is meant by an image
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Abstraction Function and Invariants

Relate concrete and abstract state spaces by an abstraction function α:

Abstract

Concrete

α

¬InvAbstract

Concrete

a2
a1

c1 c2

c3

¬Inv

α

α
α


0
■

1
■

2
■

3
■

4
■

5
■

6
■

7
■

8
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9
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■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■...
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column
indices →

// a sequence of images
sig Coarray {

mseq: seq Matrix
}

Find concrete invariants: uniform
shape of images, overlapping
columns at the interfaces for
border exchanges, etc.
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3. The How
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An Engineering Application

Public water systems depend on water distribution networks to
provide an uninterrupted supply of safe drinking water.

Engineers attempt to design
low-cost systems that meet the
hydraulic requirements of flow
and pressure.

EPANET is a widely-used
software system developed by
the US EPA to model and
simulate such systems.
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Historical Context

In the 1930s, a breakthrough by Hardy Cross in pipe network analysis:

UNIVERSITY OF ILLINOIS
ENGINEERING EXPERIMENT STATION

BULLETIN No. 286 NOVEMBER, 1936

ANALYSIS OF FLOW IN NETWORKS OF
CONDUITS OR CONDUCTORS

BY

HARDY CROSS
PROFESSOR OF STRUCTURAL ENGINEERING

ENGINEERING EXPERIMENT STATION
PUBLISHED BY THE UNIVERSITY OF ILLINOIS, URBANA
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The Hardy Cross Method

A hand method that revolutionized municipal water supply design

– Iteratively determines the flow in pipe network systems

– Nonlinear relationship between head loss and flow had been a
challenging problem

– Remains as the method taught to most civil engineering students

First computer implementation

In 1957, Hoag and Weinberg adapted the Hardy Cross
method for solving the network flow problem to the digital
computer and applied the method to the water distribution
system of the city of Palo Alto, California.
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Basic Principles

“The physical conditions controlling engineering relations often consist
of two groups of laws which are quite independent of each other.”

Conservation of mass

• Continuity of flow:

the total flow reaching any junction equals the total flow
leaving it

Conservation of energy

• Continuity of potential:

the total change in potential along any closed path is zero
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Iterative Approach

Balancing heads (or loop method)

1. Assume any distribution of flow satisfying continuity.

2. Compute in each pipe the (nonlinear) loss of head.

3. Set up in each circuit a counterbalancing flow to balance the head.

4. Compute the revised flows and repeat the procedure.

Computational aspects?

What would it mean to verify correctness?
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Hardy Cross Verification

Problem: Would want to show ...

{whileinv I : continuity of flow} ← Loop invariant
while heads in any loops are unbalanced

revise flows in each loop while maintaining invariant
end
{continuity of flow ∧ all heads balanced} ← Postcondition

Counterbalancing flow around a loop to balance the head:

∆Q = −
∑

rQ |Q |n−1

∑

rn |Q |n−1
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Hardy Cross Verification

Problem: Would want to show ...

{whileinv I : continuity of flow} ← Loop invariant
while heads in any loops are unbalanced

revise flows in each loop while maintaining invariant
end
{continuity of flow ∧ all heads balanced} ← Postcondition

We must show that whileinv I is indeed invariant:

Let I = continuity of flow then

I ∧ revise flows in each loop⇒ I
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Hoag and Weinberg: Improved Convergence
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Prove Convergence?

As with Newton-Raphson and other nonlinear solvers, the Hardy Cross
method may fail to converge.

Does that mean verification is impossible?

It’s certainly possible to implement the Hardy Cross method, and the
result may be either correct or incorrect, right?

We can recognize that convergence is a termination condition, and
prove safety:

If the program terminates, its results are correct.
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What a step in the algorithm looks like:

1

2 3

4

100

30

70

15

35
35

5020

30

∆Q1

∆Q2

⇒
1

2 3

4

100

51.17

48.83

26.06

23.94
2.77

5020

30

∆Q1 = −21.17
∆Q2 = 11.06

Initial flows Updated flows
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Simple Network Representation
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2

4

keys

3

4

keys

keys
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keys
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4

70

30

15

35

35

Directed Graph Adjacency Structure
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Network Representation in Julia

# nodal flows
n = Dict()

n[1] = 100
n[2] = -20
n[3] = -50
n[4] = -30

# edge flows
e = Dict([i => Dict() for i in 1:4])

e[1][2] = 70
e[1][4] = 30
e[2][3] = 15
e[2][4] = 35
e[4][3] = 35

# helper functions

out_edges(d, i) = d[i]

in_edges(d, j) = Dict([i => d'[j] for (i, d') in d
if j in keys(d')])
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Forward and Reverse Edges

1
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Forward edges only Forward and reverse edges
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Modeling Exercise

Wish to show

Let I = continuity of flow then

I ∧ revise flows in each loop⇒ I

And do so in the context of an object model that captures details:

• Alloy model with forward and reverse edges, edge signs, etc.

• Network representation that’s a little more complex, for efficiency

• Loop invariant I will not hold if we have conceptual errors

Carry over the global invariants found into actual code, e.g., Julia:

“A view of object models as heap invariants”
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Working with Alloy

Atoms are Alloy’s primitive entities

– indivisible, immutable, uninterpreted

Relations associate atoms with one another

– sets of tuples

– tuples are sequences of atoms

Every value in Alloy logic is a relation

– relations, sets, and scalars are all the same thing
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Alloy Model and a Snapshot

An Alloy model:

sig Attr {}

sig Node {
edge: Node->Attr

}
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Alloy Model and a Snapshot

An Alloy model:

sig Attr {}

sig Node {
edge: Node->Attr

}

Sigs define unary relations:

Attr = {(Attr0),
(Attr1),
(Attr2)}

Node = {(Node0),
(Node1),
(Node2)}

Fields define n-ary relations:

edge = {(Node1, Node0, Attr1),
(Node1, Node2, Attr2),
(Node2, Node0, Attr0)}

Dot join and box join operators:

Node1.edge[Node2] = {(Attr2)}
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Alloy Model and a Snapshot

An Alloy model:

sig Attr {}

sig Node {
edge: Node->Attr

}

Visualize adjacency:

fun adj: Node->Node {
edge.Attr

}

(a function of no arguments is

treated as a named relation, a

skolem constant)

The How 72



Snapshots: More Instances

The How 73



Snapshots: More Instances (after adding facts)

fact {
-- adj is symmetric (~ is transpose)
adj = ~adj

-- no loops (& is intersection, iden is identity)
no iden & adj

-- graph is connected (* is transitive closure)
all n: Node | Node in n.*adj

}
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Extending the Model

sig Node {
flow: Int,
edge: Node->Attr

}

abstract sig Attr {}

sig Edge extends Attr {
sign: Int,
pipe: Pipe

}

sig Pipe {
flow: Int one -> State

}
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A Sample of Assertions (Heap Invariants)

Edge signs:

-- edge signs must be either -1 or +1
fact { all e: Edge | e.sign in -1 ++ 1 }

-- anti-parallel edges have opposite signs
fact { all a, b: Node | a->b ++ b->a in adj implies

add[a.edge[b].sign, b.edge[a].sign] = 0
}

Multiplicities:

-- an edge is referenced by just one vertex pair
fact { all e: Edge | one edge.e }

-- a pipe is shared by two anti-parallel edges
fact { all p: Pipe | antiparallel_pair[edge.(pipe.p)] }
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Flow Computations

// Net flow at a node

fun net_flow [u: Node, s: State] : Int {
sub[u.flow, sum v: Node |

let e = u.edge[v] | mul[e.sign, e.pipe.flow.s]]
}

// Increment flow in a pipe

pred inc_flow [u, v: Node, q: Int, s, s": State] {
let e = u.edge[v] |

e.pipe.flow.s" = add[e.pipe.flow.s, mul[e.sign, q]]
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Verifying the Loop Invariant

-- balancing heads in an arbitrary loop
pred revise_flows [s, s": State] {

some i: Int | inc_flow[Cycle.succ, i, s, s"]
}

-- loop invariant: continuity of flow
pred inv [s: State] {

all u: Node | net_flow[u, s] = 0
}

-- check and see if the invariant holds
assert invariant_holds {

let s = so/first, s" = s.next |
inv[s] and revise_flows[s, s"] implies inv[s"]

}
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Results of the Exercise

An object model and associated heap invariants that allow us to
conclude that continuity of flow is assured.

Though a simple problem, it demonstrates that

a) Much can be done without a general theory of reals

– integers are a ring, and that’s all we need (no need for
multiplicative inverses here)

b) Boundaries of declarative models can easily grow and shrink

– we specify what loops are, but could just as easily define how to
construct them (and check the construction process)

The How 80



Results of the Exercise

An object model and associated heap invariants that allow us to
conclude that continuity of flow is assured.

Though a simple problem, it demonstrates that

a) Much can be done without a general theory of reals

– integers are a ring, and that’s all we need (no need for
multiplicative inverses here)

b) Boundaries of declarative models can easily grow and shrink

– we specify what loops are, but could just as easily define how to
construct them (and check the construction process)

The How 80



Results of the Exercise

An object model and associated heap invariants that allow us to
conclude that continuity of flow is assured.

Though a simple problem, it demonstrates that

a) Much can be done without a general theory of reals

– integers are a ring, and that’s all we need (no need for
multiplicative inverses here)

b) Boundaries of declarative models can easily grow and shrink

– we specify what loops are, but could just as easily define how to
construct them (and check the construction process)

The How 80



Conclusion

Lightweight formal methods

Are they useful?

(all tools are useful, in some context, or they’re not tools)

Okay, are they useful enough?

Versatile, so proficiency can be developed and maintained.

Complementary to historically useful strategies:

Abstraction, separation of concerns, engineering tools, and
progressive codification
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Some Books Informing This Perspective . . . Thank You!

The Spirit of Computing

David Harel
with

Yishai Feldman

David H
arel

w
ith

Yishai Feldm
an

The Spirit of Computing The Spirit of Com
puting

THIRD EDITION

T
H

IR
D

 E
D

IT
IO

N

THIRD EDITION

AlgorithmicsAlgorithmics

Algorithm
ics

From a review of the first edition:

‘This book is a veritable tour de force. Harel writes with uncommon verve, 
clarity and imagination.

‘Through the use of tantalizing questions and aptly chosen and often amusing examples, 
the author transmits to the reader the excitement and intellectual satisfaction of computer
science research. Without the use of formal mathematics and without any sacrifice of
intellectual integrity, he conveys to the general reader the profound principles on which
computer science is founded and which hitherto were only accessible in abstruse and
esoteric textbooks and papers.

‘This is scientific writing at its best.’

Dr Stan Scott, Queen's University Belfast The Times Higher Education Supplement.

This book tells the story of the concepts, ideas, methods and results fundamental to computer
science, in a form independent of the details of specific computers, languages and formalisms. It
concerns the true ‘spirit’ of computers; with the ‘recipes’ that make them tick – their algorithms.

New to this edition

■ Chapters on software engineering and on reactive systems.
■ Thoroughly revised chapter on programming languages.
■ New material on quantum and molecular computing.
■ Whole text thoroughly updated to include new material on many topics, including abstract

data types, the object–oriented paradigm, primality testing, and system verification and
validation.

David Harel is Professor and Dean of the Faculty of Mathematics and Computer Science at the
Weizmann Institute of Science. He is renowned for outstanding research in many areas of the
field, and has recently been awarded the Israel Prize in Computer Science. Yishai Feldman is on
the faculty of the Efi Arazi School of Computer Science at the Interdisciplinary Centre, Herzliya.
He specializes in the use of artificial–intelligence techniques in software engineering and their
real–world applications.

www.pearson-books.coman imprint of

Harel Cvr.QXD  16/01/2006  09:40  PM  Page 1
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FIGURE 1.11

Overview of parallel patterns.

1.5 PARALLEL PROGRAMMING MODELS
We will discuss parallel programming models that can support a wide range of parallel programming
needs. This section gives some basic background on the programming models used in this book. It will
also discuss what makes a good programming model. Appendices B and C provide more information
on the primary programming models used for examples in this book, TBB and Cilk Plus, as well as
links to online resources.

1.5.1 Desired Properties
Unfortunately, none of the most popular programming languages in use today was designed for par-
allel programming. However, since a large amount of code has already been written in existing serial
languages, practically speaking it is necessary to find an evolutionary path that extends existing pro-
gramming practices and tools to support parallelism. Broadly speaking, while enabling dependable
results, parallel programming models should have the following properties:

Performance: Achievable, scalable, predictable, and tunable. It should be possible to predictably
achieve good performance and to scale that performance to larger systems.

McCool, M., Reinders, J., & Robison, A. (2012). Structured parallel programming: patterns for efficient computation. Elsevier.
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Dijkstra’s Perspective

The role of specifications: they act as a logical firewall between
two different concerns.

• The pleasantness problem: the question of whether an engine
meeting the specification is the engine we would like to have.

– “Are we building the right product?” (Boehm, 1979)

• The correctness problem: the question of how to design an engine
meeting the specification.

– “Are we building the product right?”

See EWD 1058:
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1058.html
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Polemics and Detractors
ARTICLES 

PROGRAM VERIFICATION: THE VERY IDEA 

The notion of program verification appears to trade upon an equivocation. 
Algorithms, as logical structures, are appropriate subjects for deductive 
verification. Programs, as causal models of those structures, are not. The 
success of program verification as a generally applicable and compkfely 
reliable method for guaranteeing program performance is not even a 
theoretical possibility. 

JAMES H. FETZER 

I hold the opinion that the construction of computer 
programs is a mathematical activity like the solution of 
differential equations, that programs can be derived 
from their specifications through mafhemafical insight, 
calculation, and proof using algebraic laws as simple 
and elegant as those of elementary arithmetic. 

C. A. R. Hoare 

There are those, such as Hoare [ZO], who maintain that 
computer programming should strive to become more 
like mathematics. Others, such as DeMillo, Lipton and 
Perlis [ 81, contend this suggestion is mistaken because 
it rests upon a misconception. Their position empha- 
sizes the crucial role of social processes in coming to 
accept the validity of a proof or the truth of a theorem, 
no matter whether within purely mathematical con- 
texts or without: “We believe that, in the end, it is a 
social process that determines whether mathematicians 
feel confident about a theorem” [8, p. 2711. As they 
perceive it, the situation with respect to program verifi- 
cation is worse insofar as no similar social process 
occurs between program verifiers. The use of verifica- 
tion to guarantee the performance of a program is 
therefore bound to fail. Although Hoare’s work receives 
scant attention in their paper, there should be no doubt 
that his approach-and that of others, such as E. W. 
Dijkstra [lo], who share a similar point of view-is the 
intended object of their criticism. 

01988 ACM OOOl-0782/88/0900-1048 $1.50 

Their presentation has aroused enormous interest 
and considerable controversy, ranging from unqualified 
agreement [expressed, for example, by Glazer [13]: 
“Such an article makes me delight in being . . . a mem- 
ber of the human race”] to unqualified disagreement 
[expressed, for example, by Maurer [28]: “The catalog 
of criticisms of the idea of proving a program correct . . . 
deserves a catalog of responses . . .“I. Indeed, some of 
the most interesting reactions have come from those 
whose position lies somewhere in between, such as 
van den Bos [37], who maintains that, “Once one 
accepts the quasi-empiricism in mathematics, and by 
analogy in computer science, one can either become an 
adherent of the Popperian school of conjectures (theo- 
ries) and refutations [32], or one may believe Kuhn 
[23], who claims that the fate of scientific theories is 
decided by a social forum , . .‘,.I Perhaps better than 
any other commentator, van den Bos seems to have put 
his finger on what may well be the crucial issue raised 
by [8], namely: if program verification, like mathemati- 
cal validation, could only occur as the result of a falli- 
ble social process, if it could occur at all, then what 
would distinguish programming procedures from other 
expert activities, such as judges deciding cases at law 
and referees reviewing articles for journals? If it is 

’ Popper advocates the conception of science as an objective process of “trial 
and error” whose results are always fallible. while Kuhn emph.kzes the 
social dimension of scientific communities in accepting and rejecting what he 
calls “paradigms.” See, for example. 1231. [32-331. A fascinating collection of 
papers discussing their similarities and differences is presented in 1251. 
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Floating Point in the Larch Prover

210 A.16. Floating point arithmetic

The predicate approx(f, q, t) compares the result f of a floating
point operation to the exact rational value q of that operation; the predicate
is true if the result is “close enough” to the exact value (i.e., within a
tolerance t), or if the exact value is too big to be represented.
We have not axiomatized the properties of the IEEE standard’s non-

numeric floating point values (NaN’s). We leave that as an exercise for
numerical analysts, in the expectation that an accurate characterization is
separable from the numerical properties. It might be more complex than
anything we have specified in this handbook.

FloatingPoint (smallest, largest,
gap, rational): trait

assumes FPAssumptions
includes

Rational,
TotalOrder (F)

introduces
mag: F Q
approx: F, Q, Q Bool
-__, abs, __ 1: F F
__+__, __*__, __-__, __/__: F, F F

asserts
F generated by float
f, f1, f2: F, q, t: Q
f1 f2 == rational(f1) rational(f2);
mag(f) == abs(rational(f));
approx(f, q, t) ==

abs(q) largest
abs(rational(f) - q)

(smallest +
(gap*(mag(f) + abs(q) + t)));

approx(-f, -rational(f), 0);
f 0 approx(f 1, rational(f) 1, 0);
approx(abs(f), mag(f), 0);
approx(f1 + f2, rational(f1) + rational(f2),

mag(f1) + mag(f2));
approx(f1 * f2, rational(f1) * rational(f2), 0);
approx(f1 - f2, rational(f1) - rational(f2),

mag(f1) + mag(f2));
f2 0

approx(f1/f2, rational(f1)/rational(f2), 0)
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Wet-Dry States

node being updated

Γ

ΩI

ΩE

element state
depends on:

– incident nodes
node state
depends on:

– water surface elevation

– incident elements and adjacent nodes
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Physical Properties of Elements

0: for e in elements do sig Element extends Triangle {
wet: Bool one→ State

accommodate
state changes

}

sig State {}

wete ← true

1: for n in nodes do
if Wn and Hn < Hmin then

Wn← false, W t
n ← false

2: for e in elements do
if ¬Wi for one node i on e and Vss(e)> Vmin then

W t
i ← true

3: for e in elements do
find nodes i and j of e with highest water surface
if min(Hi , H j)< 1.2Hmin then

wete ← false

4: for n in nodes do
if W t

n and n on only inactive elements then
W t

n ← false

5: for n in nodes do
Wn←W t

n
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Physical Properties of Elements

0: for e in elements do sig Element extends Triangle {
wet: Bool one→ State,
slowFlow: one Bool
lowNode: Node

}

wete ← true

1: for n in nodes do
if Wn and Hn < Hmin then

Wn← false, W t
n ← false

2: for e in elements do
if ¬Wi for one node i on e and Vss(e)> Vmin then

W t
i ← true

3: for e in elements do
find nodes i and j of e with highest water surface
if min(Hi , H j)< 1.2Hmin then

wete ← false

4: for n in nodes do
if W t

n and n on only inactive elements then
W t

n ← false

5: for n in nodes do
Wn←W t

n
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Physical Properties of Nodes

0: for e in elements do sig Node extends Vertex {
W, Wt: Bool one→ State,
H: Height

}

abstract sig Height {}

one sig Low, Med, High
extends Height {}

wete ← true

1: for n in nodes do
if Wn and Hn < Hmin then

Wn← false, W t
n ← false

2: for e in elements do
if ¬Wi for one node i on e . . . then

W t
i ← true

3: for e in elements do
find nodes i and j of e with highest water surface
if min(Hi , H j)< 1.2Hmin then

wete ← false

4: for n in nodes do
if W t

n and n on only inactive elements then
W t

n ← false

5: for n in nodes do
Wn←W t

n
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Dynamics: Wetting and Drying

• Model each part of the algorithm by a predicate defining the state
change

• Form a trace by chaining together parts and thereby constraining
intermediate states

• Consider only a single time step:

– begin with arbitrary wet-dry states, as though they had been
produced in a prior time step

– check correctness condition at the end of one step
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Dynamics: Wetting and Drying

−− nodal wetting (propagate wetness across triangle if flow is not slow)
pred part2 [m: Mesh, s, s': State] {

noElementChange[m, s, s']
all n: m.nodes | n.W.s' = n.W.s

and n.Wt.s' = (make_wet[m, n, s] implies True else n.Wt.s) }

−− define the conditions that cause a node to become wet
pred make_wet [m: Mesh, n: Node, s: State] {

some e: m.elements | e.slowFlow = False and loneDryNode[n, e, s] }

pred loneDryNode [n: Node, e: Element, s: State] {
n in dom[e.edges] and n.W.s = False and wetNodes[e, s] = 2 }

fun wetNodes [e: Element, s: State]: Int {
#(dom[e.edges] <: W).s.True }
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Results of the Exercise

Final wet-dry states from boundary nodes in a full run can be used to
impose intermediate wet-dry states in subdomain runs

• No need to record intermediate wet-dry states of nodes and
elements

Thus, for actual simulations in ADCIRC, we can record a minimal
amount of data and impose it as boundary conditions

• This is in fact how subdomain modeling is implemented in
ADCIRC beginning with v51.42
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Tabular Pattern for Nested, Bounded Iteration

Pattern defines an iteration table (iter) and time-indexed scalar
variables (x , y), where ψ and ω define loop bounds:

some iter: Int→ Int→ Int, x , y, . . .: Int→ univ {
table[{i: ψ, j: ω | . . . }, iter]
all i: ψ |

all j: ω |
let t = iter[i][j], t' = t.add[1] {

x[t'] = . . . x[t] . . .
y[t'] = . . . y[t] . . .
. . .
}

}

Pseudo-code:

for i in ψ do
for j in ω do

x = . . . x . . .
y = . . . y . . .
. . .
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Dense and CSR Transpose Fragments

pred transpose [m, m': Matrix] {
m'.rows = m.cols
m'.cols = m.rows
m'.vals = { j, i: Int, v: Value | i→ j→ v in m.vals }
}

pred transpose [c, c': CSR] {
...
all i: range[c.rows] |

all k: range[c.IA[i], c.IA[i.add[1]]] |
let t = iter[i][k], t' = t.add[1],

j = c.JA[k],
nxt = c'.IA[t][j] {

c'.A[nxt] = c.A[k]
c'.JA[nxt] = i
c'.IA[t'] = c'.IA[t] ++ j→ nxt.add[1]
}

Pseudo-code:

for i in range(c.rows) do
for k in range(c.IA [i], c.IA [i + 1]) do

j← c.JA [k]
nxt← c’.IA [ j]
c’.A [nxt]← c.A [k]
c’.JA [nxt]← i
c’.IA [ j]← nxt+ 1
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Loss of Head

We assume that we know the law determining the loss of head in any
length of pipe for a given flow. This law usually takes the form

h= CV n

where h is the change in head accompanying flow in any length of
pipe, C is the loss in the pipe for unit velocity of flow, and V is the
velocity. Since the quantity of water flowing in the pipe is AV , this
relation may be rewritten

h= rQn

where r is the loss of head in the pipe for unit quantity of flow. The
quantity r depends on the length and diameter of pipe and on its
roughness.

The problem is to find the amount of water flowing in each pipe.
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Further Details from the Paper

b) Compute in each pipe the loss of head h= rQn.

With due attention to sign (direction of potential drop), compute
the total head loss around each elementary closed circuit

∑

h=
∑

rQn

(c) Compute also in each such closed circuit the sum of the quantities
R= nrQ(n−1) without reference to sign.

(d) Set up in each circuit a counterbalancing flow to balance the head
in that circuit (to make

∑

rQn = 0) equal to

∆=

∑

rQn (with due attention to direction of flow)
∑

nrQ(n−1) (without reference to direction of flow)

(e) Compute the revised flows and repeat the procedure.
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