10

What could the next 39 years of software
verification in climate science look like?

Dominic Orchard

T8 UNIVERSITY OF (@9 Instiuteof
ﬁﬁ CAMBRIDGE Climate Science

University of

Kent

Programming
Languages and Systems

for Science laboratory

Workshop on Correctness and Reproducibility for Climate and Weather Software
NCAR, 9-10th November 2023

https://plas4sci.github.io/
https://plas4sci.github.io/
https://plas4sci.github.io/

Terminology | will use

Validation
Did we implement the right equations?

VsS.

Verification
Did we implement the equations right?

Terminology: what does “verified” mean?

Verification wrt. a specification
i.e. check(implementation, specification)

. validation is verification

where specification =)Xobservation

The value of a specification is what we make of it;
it depends on our goals and values

State-of-the-art verification techniques...

* Implementation language = specification language

e Test subset of inputs
Does not show “absence of bugs” (Dijkstra); may fail to expose unconceived-of bugs

® Property-based testing: Automatically consider broad input space

def property(x : str) —> bool:
return (reverse(reverse(x)) == x)

“Generator” for str systematically specialises / randomises inputs, finding

counterexamples (see QuickCheck, hypothesis)

State-of-the-art verification techniques...

* Tightly coupled, lightweight specifications

e Static types checked automatically by compiler

e.g. integer :: x; logical :: y; x=x+y (rejected)

e Dynamic languages may support gradual / optional typing (see Python+mypy)

e Various “fancy” types in research languages capture more program behaviour

» Dependent types (see Agda); relationships (types depending on values)
» Refinement types (see Liquid Haskell); representation invariants
» Graded types (see Granule); data-flow properties

» Session types (many languages); protocols

State-of-the-art verification techniques...

Deductive verification

Software Analyzers

* Annotate with pre- and post- conditions
{pre}C{post} (Floyd-Hoare logic)

e Automated tool to check conformance (leveraging automatic solvers, e.g., Z3)

e Often needs careful design of invariants at loops

 Requires a formal language semantics

 Can be language-integrated, see Dafny

!= static_assert pre('"deg >= 0" & "deg <= 360")
!= static_assert post("toRad >= 0" & "toRad <= 6.284")
real function toRad(deg)
real deg
real, parameter :: pl1 = 3.14159265358979323864
toRad = 2 % pi * (deg/360)
end function toRad

State-of-the-art verification techniques...

e Specification agreed upon; general “bad behaviours” e.g.:

* “Use after free”

e OQut-of-bounds access Cach@[F{t

® Divide-by-zero

e Overflow

e Not usually domain-specific

ice thi - - S =
* Some nice things for floating-point, see The Herbie Project C:” \E

14

State-of-the-art verification techniques...
Proof assistants / interactive theorem provers

e Impl. language = spec. language e :\v/\
open import Data.Nat
modelAl : N —> N

* But forces implementation language choice mwwin=-n-: THEOREM PROVER
o o modelA2 : N —> N
Unfamiliar nodelA2 0 = 1 {/j d
Not high-performance testl : Sinplespec \ A /49 O
. . . |
Less extensive libraries test2 : Siplespec N N

testZ2 m=m1l=1

—— A full specification is initial in the category of specifications
fullSpec : SimpleSpec N N

@ Hugley Successively in SOme area; big effOrtS fullSpec m = forall (n : N) => ((n=0) - (Imn=1)) x (- (n=0) —=> (mn=n))

—— Full spec implies testl and test
initialityl : SSpecMorphism fullSpec testl
initialityl m x with x @

.. | (prfl , prf2) = prfl refl

Verified microkernel Verified C compiler initiality2 : SSpecMorphism fullSpec test2

initiality2 m x with x 1
.. | (prfl , prf2) = prf2 (\())

—— But neither of the two tests on its own subsumes the other

test12morph : - (SSpecMorphism testl test2)
o m p ert testl2morph s = aux

where
—— Counter example model that means testl =/> test2
counterexample : Model N N

Security. Performance. Proof,
8

State-of-the-art verification techniques...
Modelling and model checking rrogran

nodule simulation
use nelpers
implicit none

contains

subroutine compute_tentative_velocity(u, v, f, g, flag, del_t)
real u(@:imax+1, @:jmax+1), v{0:imax+1, @:jmax+1), f(@:imax+1l, @:jmax+1l), gi@:imax+1, @:jmax+1)
integer flag{@:imax+1, @:jmax+1)
real, intent{in) :: del_t

integer i, j
real du2dx, duvdy, duvdx, dv2dy, laplu, laplv

e Specification language based on logic |

only if both adjacent cells are fluid cells */

if (tolLogical(iand{flagli,j), C_F)) .and. tolLogical(iand(flag{i+1,j), C_F})) then

du2dx = ((uli,j)+ulis1,j))*(uli,jl+ulisl,j)l+ &

.
ganmaxabs(uli,jleuli+1,j))={uli,j)-uli+1,j))- &
(uli-1,3)+uli,j))=luli-1,j)+uli,j))- &

ganma=abs(uli-1,j)+uli,j) }={uli-1,j)-u(1,j))) &
/(4. 8%xdelx)

° ° duvdy = ((vi{i,j)ev(is1,j))*(uli,j)+uli,j+1)}+ & >
‘ ganma*abs(v(i,j)ev(i+1,j))={uli,j)-uli,j+1))- &
nterrogation or model design (see O
ganma=abs(v(i,j-1)+v{i+1,j-1))=(u(i,j-1)-uli,j))) &
/(4. 8+dely)
laplu = (uli+1,3)-2.08%u(1,j)+uli-1,j))/delx/delx+ &

(uli,j+1)-2.8%u(i,j)+uli,j-1)) /dely/dely

f(i,j) = uli,jl+del_t+(laplu/Re-du2dx-duvdy)
else
f(1,j) = uld,j)
end if

* Model check: exhaustive search of state space = -

do i =1, imax
do j =1, (jmax-1)
only if both adjacent cells

if (tolLogicall{iand{flag(i,j), . tolLogical{iand{flagli,j+1), C_F)))

duvdx = [(uli.ilegld q4+

* Requires a model (can be extracted)

3:A-As

~rua‘4fa'

i34

* Has been very effective in safety-critical systems

Case study: end-to-end verification

J Autom Reasoning (2013) 50:423-456 82 D 1 82 D
DOI10.1007/s10817-012-9255-4 —
Ox? c? Ot?
Wave Equation Numerical Resolution: . .
1 discretize

A Comprehensive Mechanized Proof of a C Program

Sylvie Boldo - Francois Clément -

1 _ 0
Jean-Christophe Filliatre - Micaela Mayero - 'fy Lo (c def Py — D 4 ﬁ A () (3 s p0)), —
Guillaume Melquiond - Pierre Weis Verl s (Lan(e)pn): At 9 (An(e) (Pir))i

Proof assistants

Received: 12 December 2011 / Accepted: 23 June 2012 /] M plement
© Springer Science+Business Media B.V. 2012 . . e .
Deductive verification
Abstract We formally prove correct a C pro /* Evolution problem and boundary conc
scheme for the resolution of the one-dimensior Automate d the orem pl‘OVGl‘S /* Pr opagation = time [oop. */
implementation introduces errors at several leve fo;*(ll:ilft l;jzl;;jal;++)*§
method errors, and floating-point computations lead to round-off errors. We an- p[0][k+1] = 0. ;y'
notate this C program to specify both method error and round-off error. We use /* Time iteration k = space loop. */
10 for (i=1; i<ni; i++) {

dp = p[i+1][k] — 2.xp[i][k] + p[i-

" 71Tr: .+ 11 ~ T “1Tr..1 -~ 717r15r: -1 1

So what gets used in climate science?
Very few of these advances (AFAIK..)

* Jesting
* [ype systems

Should we be doing more / “full”
formal verification of climate models?

“Lightweight Formal Methods” (Jackson, Wing, 1996)

"...except in safety-critical work, the cost of full verification is
prohibitive and early detection of errors is a more realistic goal.

...the cost of proof is usually an order of magnitude greater than the
cost of specification. And yet the cost of specification alone is often
beyond a project's budget.

There can be no point embarking on the construction of a specification
until it is known exactly what the specification is for; which risks it is
intended to mitigate; and in which respects it will inevitably prove
inadequate."

13

What risks do we wish to mitigate?

GCMs / intermediate-complexity models

* Violation of conservation / invariances

* |nstabllity, e.g., due to unbounded error growth

 Race conditions

* Slow development process due to constant bug chasing

NOt exnaustive!

14

“Cost of specification”

Full verification Partial verification
| | |
. I N
Code Full Partial Lishtweight External spec.
spec. spec. spec. (Static analysis)

SN

Time consuming Choose parts that Focussed on one aspect
Specification completeness? are highest risk

15

Case study: lightweight verification for science

CamfFort

Refactoring Verification Analysis

== Met Office

Hadley Centre

https://github.com/camfort/

https://github.com/camfort/camfort/

Numerical stability:

camfort fp-check

No equality (or inequality) on FP

Computational performance:
camfort array-check

Column-major order traversal

do 1 = 2, n-1
do J = 2, n-1
x(j,i) = x(j,1i) + x(j-1,i-1) + ..

Memory performance & safety:
All allocated arrays freed, no double free, or use after free

camfort alloc-check

17

Units-of-measure verification in CamFort

1 program energy

2 != unit kg :: mass Optional specifications via comments
3 != unit m :: height

Z real :: mass = 3.00, gravity = 9.91, height = 4.20

5 = unit kg m**2/s**2 :: potential_energy

6 real :: potential_energy

v

3 potential_energy = mass * gravity * height

9 end program energy

Check

$ camfort units-check energyl.f90

energyl.f90: Consistent. 4 variables checked.

18

Units-of-measure verification in CamFort

program energy
!= unit kg :: mass
= unit m :: height
real :: mass = 3.00, gravity = 9.91, height = 4.20
= unit kg m**2/s**2 :: potential_energy
real :: potential_energy

potential_energy = mass * gravity * height
end program energy

© 00O NOY OV WD -

Synthesise

$ camfort units-synth energyl.f90 energyl.f90

Synthesising units for energyl. {90

19

Units-of-measure verification in CamFort

1 program energy

2 != unit kg :: mass

3 = unit :: height

4 = ynit m/s**2 :: gravity

5 real :: mass = 3.00, gravity = 9.91, height = 4.20
6 = unit kg m**2/s**x2 :: potential_energy

[real :: potential_energy

3 potential_energy = mass * gravity * height

9 end program energy

Synthesise

$ camfort units-synth energyl.f90 energyl.f90

Synthesising units for energyl. {90

20

9

Going forwards

* Testing
* Will likely remain a mainstay (incl. validation as proxy for verification)
* More deployment of property-based testing
e Can be auto-generated from unit tests (Peleg et al. VMICAI 2018)

* Automatic generation of tests (program synthesis)

* Types
» Slow adoption of ideas into mainstream languages
* Some form of dependent-types likely a lost-cost win

» Julia possibly a good space for this (but long way to go; cf. Function)

21

9

Going forwards

e Deductive verification

* Hard because really needs formal semantics
e But well established for C. Effort for Fortran? (in 2050!?)

* Interactive proof assistants
* Languages not (yet) accessible

e Unlikely unless coupled with some model extraction (+ more
heterogeneous teams)

* Potentially useful to study core models / infrastructure

22

9

Going forwards

e Static analysis
e Useful and easy to deploy. Big wins with some training.
* More targeted analysis for science needed. Ideas include:
* Sensitivity / robustness

e Conservation

* (E)DSLs with correct-by-construction properties?

23

Going forwards...?

Need for more interaction!

ﬁ Climate scientists

A §

Verification community

PROPL - Workshop on Programming for the Planet
20th January - London + online

https://popl24.sigplan.org/home/propl-2024

PO P L 2024 Wed 17 - Fri 19 January 2024 London, United Kingdom

Attending ~ Tracks ~ Organization ~ Q Search Series v Sign in Sign up

A POPL 2024 (series) / PROPL 2024 (series) /

Programming for the Planet (PROPL) PROPL 2024

Call for Papers Important Dates @O AoE (UTC-12h)
There are simultaneous crises across the planet due to rising CO, emissions, rapid biodiversity loss, and desertification. Tue 31 Oct 2023

Assessing progress on these complex and interlocking issues requires a global view on the effectiveness of our Talk proposals deadline

adaptations and mitigations. To succeed in the coming decades, we need a wealth of new data about our natural

environment that we rapidly process into accurate indicators, with sufficient trust in the resulting insights to make Wed 15 Nov 2023

decisions that affect the lives of billions of people worldwide. Notification

However, programming the computer systems required to effectively ingest, clean, collate, process, explore, archive, Sat 20 Jan - Sun 21 Jan 2024

and derive policy decisions from the planetary data we are collecting is difficult and leads to artefacts presently not Workshop

usable by non-CS-experts, not reliable enough for scientific and political decision making, and not widely and openly ;

available to all interested parties. Concurrently, domains where computational techniques are already central (e.g.,
climate modelling) are facing diminishing returns from current hardware trends and software techniques.

PROPL explores how to close the gap between state-of-the-art programming methods being developed in academia
and the use of programming in climate analysis, modelling, forecasting, policy, and diplomacy. The aim is to build ‘ Anil Madhavapeddy

Thanks

® bttps://dorchard.github.io ™ https://iccs.cam.ac.uk

@ types.pl/@dorchard CamFort https://camfort.qithub.io

y @dorchard

https://dorchard.github.io
https://camfort.github.io/
http://iccs.cam.ac.uk

Backup slides

What risks do we wish to mitigate?

Data analysis tools

* |ncorrect analysis
* Discarded data (some data missed)
* Duplicated data (some data used twice)
* Wrong sign
* Scale and dimensionality mismatches
* Slow development process due to constant bug chasing

28

Validation as a proxy for verification

* Can we get a stable run (over decades)?
* Is it plausible from physics perspective?

* Do hindcasts reproduce observational record?

If the science is relatively settled, then points to bugs not invalidity

Problem: error localisation is poor!

29

