
Workshop on Correctness and Reproducibility for Climate and Weather Software 
NCAR, 9-10th November 2023

What could the next 30 years of software
verification in climate science look like?

Dominic Orchard
Programming
Languages and Systems
for Science laboratory

10

https://plas4sci.github.io/
https://plas4sci.github.io/
https://plas4sci.github.io/

Validation
Did we implement the right equations?
vs.

Verification
Did we implement the equations right?

2

Terminology I will use

 validation is verification
 where specification observation
∴

≜ ≈

Terminology: what does “verified” mean?

Verification wrt. a specification
𝖼𝗁𝖾𝖼𝗄(implementation, specification)i.e.

3

The value of a specification is what we make of it;
it depends on our goals and values

State-of-the-art verification techniques…
Testing
• Implementation language = specification language

• Test subset of inputs
 Does not show “absence of bugs” (Dijkstra); may fail to expose unconceived-of bugs

• Property-based testing: Automatically consider broad input space

def property(x : str) -> bool:
 return (reverse(reverse(x)) == x)

“Generator” for str systematically specialises / randomises inputs, finding
counterexamples (see QuickCheck, hypothesis)

4

State-of-the-art verification techniques…
Type systems

• Tightly coupled, lightweight specifications

• Static types checked automatically by compiler

e.g. integer :: x; logical :: y; x=x+y (rejected)

• Dynamic languages may support gradual / optional typing (see Python+mypy)

• Various “fancy” types in research languages capture more program behaviour

‣ Dependent types (see Agda); relationships (types depending on values)
‣ Refinement types (see Liquid Haskell); representation invariants
‣ Graded types (see Granule); data-flow properties
‣ Session types (many languages); protocols

5

State-of-the-art verification techniques…
Deductive verification
• Annotate with pre- and post- conditions

 (Floyd-Hoare logic)

• Automated tool to check conformance (leveraging automatic solvers, e.g., Z3)

• Often needs careful design of invariants at loops

• Requires a formal language semantics

• Can be language-integrated, see Dafny

{𝗉𝗋𝖾}C{𝗉𝗈𝗌𝗍}

 != static_assert pre("deg >= 0" & "deg <= 360")
 != static_assert post("toRad >= 0" & "toRad <= 6.284")
 real function toRad(deg)
 real deg
 real, parameter :: pi = 3.14159265358979323864
 toRad = 2 * pi * (deg/360)
 end function toRad

State-of-the-art verification techniques…
Static analysis tools

• Specification agreed upon; general “bad behaviours” e.g.:

• “Use after free”

• Out-of-bounds access

• Divide-by-zero

• Overflow

• Not usually domain-specific

• Some nice things for floating-point, see The Herbie Project

7

State-of-the-art verification techniques…
Proof assistants / interactive theorem provers
• Impl. language = spec. language

• But forces implementation language choice
‣ Unfamiliar
‣ Not high-performance
‣ Less extensive libraries

• Hugley successively in some area; big efforts

8

Verified microkernel Verified C compiler

State-of-the-art verification techniques…
Modelling and model checking Program Model

extraction
• Specification language based on logic

• Interrogation of model design (see Alloy)

• Model check: exhaustive search of state space

• Requires a model (can be extracted)

• Has been very effective in safety-critical systems

9

Proof assistants

Deductive verification

Automated theorem provers

Case study: end-to-end verification

discretize

….
implement

….

Verify

10

So what gets used in climate science?
Very few of these advances
• Testing

• Type systems

• Deductive verification

• Static analysis

• Interactive theorem provers

• Modelling and model checking

(AFAIK..!)

11

Should we be doing more / “full”
formal verification of climate models?

12

There can be no point embarking on the construction of a specification
until it is known exactly what the specification is for; which risks it is
intended to mitigate; and in which respects it will inevitably prove
inadequate."

"...except in safety-critical work, the cost of full verification is
prohibitive and early detection of errors is a more realistic goal.

...the cost of proof is usually an order of magnitude greater than the
cost of specification. And yet the cost of specification alone is often
beyond a project's budget.

“Lightweight Formal Methods” (Jackson, Wing, 1996)

13

What risks do we wish to mitigate?
GCMs / intermediate-complexity models

• Violation of conservation / invariances

• Instability, e.g., due to unbounded error growth

• Race conditions

• Slow development process due to constant bug chasing

14
not exhaustive!

“Cost of specification”

Code Full
spec.

Partial
spec.

Time consuming
Specification completeness?

Choose parts that
are highest risk

Lightweight
spec.

Focussed on one aspect

External spec.
(Static analysis)

Full verification Partial verification

15

Case study: lightweight verification for science

https://github.com/camfort/

Verification

 🤔☑
Analysis

🐞 🔍
Refactoring

🏚 🏠→77 90

16

https://github.com/camfort/camfort/

camfort fp-check
Numerical stability:

No equality (or inequality) on FP

camfort array-check
Computational performance:

Column-major order traversal

camfort alloc-check Memory performance & safety:
All allocated arrays freed, no double free, or use after free

do i = 2, n-1
 do j = 2, n-1
 x(j,i) = x(j,i) + x(j-1,i-1) + …

17

energy1.f90: Consistent. 4 variables checked.

Check
$ camfort units-check energy1.f90

Units-of-measure verification in CamFort

1 program energy
2 != unit kg :: mass
3 != unit m :: height
4 real :: mass = 3.00, gravity = 9.91, height = 4.20
5 != unit kg m**2/s**2 :: potential_energy
6 real :: potential_energy
7
8 potential_energy = mass * gravity * height
9 end program energy

18

Optional specifications via comments

1 program energy
2 != unit kg :: mass
3 != unit m :: height
4 real :: mass = 3.00, gravity = 9.91, height = 4.20
5 != unit kg m**2/s**2 :: potential_energy
6 real :: potential_energy
7
8 potential_energy = mass * gravity * height
9 end program energy

Synthesising units for energy1.f90

Synthesise
$ camfort units-synth energy1.f90 energy1.f90

Units-of-measure verification in CamFort

19

1 program energy
2 != unit kg :: mass
3 != unit m :: height
4 != unit m/s**2 :: gravity
5 real :: mass = 3.00, gravity = 9.91, height = 4.20
6 != unit kg m**2/s**2 :: potential_energy
7 real :: potential_energy
8 potential_energy = mass * gravity * height
9 end program energy

Synthesising units for energy1.f90

Synthesise
$ camfort units-synth energy1.f90 energy1.f90

Units-of-measure verification in CamFort

20

Going forwards…?
•Testing

•Will likely remain a mainstay (incl. validation as proxy for verification)
•More deployment of property-based testing

•Can be auto-generated from unit tests (Peleg et al. VMCAI 2018)
•Automatic generation of tests (program synthesis)

•Types
•Slow adoption of ideas into mainstream languages
•Some form of dependent-types likely a lost-cost win
•Julia possibly a good space for this (but long way to go; cf. Function)

21

Going forwards…?

•Deductive verification
•Hard because really needs formal semantics
•But well established for C. Effort for Fortran? (in 2050!?)

•Interactive proof assistants
•Languages not (yet) accessible
•Unlikely unless coupled with some model extraction (+ more

heterogeneous teams)
•Potentially useful to study core models / infrastructure

22

Going forwards…?

•Static analysis
•Useful and easy to deploy. Big wins with some training.
•More targeted analysis for science needed. Ideas include:

•Sensitivity / robustness
•Conservation

•(E)DSLs with correct-by-construction properties?

23

Going forwards…?

Need for more interaction!
Climate scientists

Verification community

24

PROPL - Workshop on Programming for the Planet
20th January - London + online

https://popl24.sigplan.org/home/propl-2024

Thanks

https://dorchard.github.io

@dorchard

types.pl/@dorchard https://camfort.github.io

https://iccs.cam.ac.uk

https://dorchard.github.io
https://camfort.github.io/
http://iccs.cam.ac.uk

Backup slides

What risks do we wish to mitigate?
Data analysis tools

• Incorrect analysis

• Discarded data (some data missed)

• Duplicated data (some data used twice)

• Wrong sign

• Scale and dimensionality mismatches

• Slow development process due to constant bug chasing

28

Validation as a proxy for verification
•Can we get a stable run (over decades)?
• Is it plausible from physics perspective?
•Do hindcasts reproduce observational record?

If the science is relatively settled, then points to bugs not invalidity

Problem: error localisation is poor!

29

