Methods and Tools for the Application of the UF-ECT to New Climate Models

Teo Price-Broncucia, Allison Baker, and Dorit Hammerling

Purpose of UF-ECT

Identify inconsistencies between large scientific model outputs run in different configurations.

The UF-ECT: Overview 1) Characterize model variability

using large ensemble of model runs.

bility del runs.

1) Characterize model variability using large ensemble of model runs.

1) Characterize model variability using large ensemble of model runs.

2) Test new configurations using a small set of model runs.

1) Characterize model variability using large ensemble of model runs.

FAIL

2) Test new configurations using a small set of model runs.

O) Identify correct test parameters for given model.

 Develop a recipe for applying the UF-ECT to new models.

- Develop a recipe for applying the UF-ECT to new models.
 - Can we choose test parameters in a cohesive way to:

- Develop a recipe for applying the UF-ECT to new models.
 - Can we choose test parameters in a cohesive way to:
 - Detect changes across our model.

- 1. Develop a recipe for applying the UF-ECT to new models.
 - Can we choose test parameters in a cohesive way to:
 - Detect changes across our model.
 - Ensure usability for model developers.

- Develop a recipe for applying the UF-ECT to new models.
 - Can we choose test parameters in a cohesive way to:
 - Detect changes across our model.
 - Ensure usability for model developers.
- 2. Demonstrate our approach on a different earth system model (MPAS-A)

- Develop a recipe for applying the UF-ECT to new models.
 - Can we choose test parameters in a cohesive way to:
 - Detect changes across our model.
 - Ensure usability for model developers.
- 2. Demonstrate our approach on a different earth system model (MPAS-A)
- 3. Identify if previous results are still appropriate for updated CESM CAM.

T: How Long To Run Model?

T: How Long To Run Model?

 Using a common test for normality (Shapiro-Wilks) and waiting for the number of nonnormal variables to stabilize was an easy way to determine when the model had been run long enough.

T: How Long To Run Model?

- Using a common test for normality (Shapiro-Wilks) and waiting for the number of nonnormal variables to stabilize was an easy way to determine when the model had been run long enough.
- This indicates that our initial perturbations in one field have propagated through the model.

• Estimates of PC variance are biased according to:

• Estimates of PC variance are biased according to:

$$E(l_i) = \lambda_i \left[1 + \frac{1}{n} \sum_{j \neq i}^p \left(\frac{\lambda_j}{\lambda_i - \lambda_j} \right) \right] + O(1)$$

[Lawley, 1956]

50

• Estimates of PC variance are biased according to:

$$E(l_i) = \lambda_i \left[1 + \frac{1}{n} \sum_{j \neq i}^p \left(\frac{\lambda_j}{\lambda_i - \lambda_j} \right) \right] + O(1)$$

[Lawley, 1956]

• Effect is large variances are overestimated, small variances are underestimated.

50

• Estimates of PC variance are biased according to:

$$E(l_i) = \lambda_i \left[1 + \frac{1}{n} \sum_{j \neq i}^p \left(\frac{\lambda_j}{\lambda_i - \lambda_j} \right) \right] + O(1)$$

[Lawley, 1956]

• Effect is large variances are overestimated, small variances are underestimated.

N_{PC}: How Many PCA Dimensions to Use?

 Bias changes our estimate of how many PC's we need to adequately capture our model.

N_{PC}: How Many PCA Dimensions to Use?

- This changes our estimate of how many PC's we need to adequately capture our model.
 - We address this by increasing our ensemble size until the number of PC dimensions required to describe 95% of our model variance stabilizes.

600

• Bias can cause erroneous failures due to underestimating the variance of specific PC's.

- Bias can cause erroneous failures due to underestimating the variance of specific PC's.
 - Overestimates don't average out in the UF-ECT design.

- Bias can cause erroneous failures due to underestimating the variance of specific PC's.
 - Overestimates don't average out in the UF-ECT design.
 - In order to limit bias in individual PC's we increase ensemble size until false positive rate (FPR) is acceptable.

m_{σ} : How To Set Failure Cutoff?

m_{σ} : How To Set Failure Cutoff?

• Originally set to $m_{\sigma} = 2$.

m_{σ} : How To Set Failure Cutoff?

- Originally set to $m_{\sigma} = 2$.
- Bigger models -> more PC's -> more chances to fail -> higher FPR.

*m*_c: How To Set Failure Cutoff?

- Originally set to $m_{\sigma} = 2$.
- Bigger models -> more PC's -> more chances to fail -> higher FPR.

*m*_c: How To Set Failure Cutoff?

- Originally set to $m_{\sigma} = 2$.
- Bigger models -> more PC's -> more chances to fail -> higher FPR.
- We introduce a step to numerically solve for a reasonable m_{σ} at our chosen $N_{\rm PC}$

Determine an appropriate length to run a model. 1.

Determine an appropriate length to run a model. 1.

- Want to make sure perturbations have propagated through the model.

- 1. Determine an appropriate length to run a model.
- Want to make sure perturbations have propagated through the model. 2. Determine an appropriate number of PC's to use.

- 1. Determine an appropriate length to run a model.
 - Want to make sure perturbations have propagated through the model.
- 2. Determine an appropriate number of PC's to use.
 - Make sure we capture most of the variance of the model.

- 1. Determine an appropriate length to run a model.
 - Want to make sure perturbations have propagated through the model.
- 2. Determine an appropriate number of PC's to use.
 - Make sure we capture most of the variance of the model.
 - Also sets a minimum ensemble size.

- 1. Determine an appropriate length to run a model.
 - Want to make sure perturbations have propagated through the model.
- 2. Determine an appropriate number of PC's to use.
 - Make sure we capture most of the variance of the model.
 - Also sets a minimum ensemble size.
- 3. Determine appropriate failure cutoff and ensemble size to prevent too many erroneous failures.

Testing with MPAS Model Across Prediction Scales

 In order to test our procedure for determining UF-ECT parameters we applied them to a new model, MPAS-A.

Testing with MPAS Model Across Prediction Scales

- In order to test our procedure for determining UF-ECT parameters we applied them to a new model, MPAS-A.
- MPAS is a climate model based around unstructured Voronoi meshes.

False Positives

Do additional runs from the same configuration fail?

Non-Climate Changing Modifications

Changes that might lead to BFB changes, but aren't expected to affect scientific conclusions.

UF-ECT Test Types

Climate Changing Parameters

Does the test detect the change of scientific parameters?

Test Title

Test Description	Test Result (EET
Test Description	Failure Rate)

EET = Run test with many different ensembles / test runs

Test Title	Test Description	Test Result (EET Failure Rate)
Compiler	Change from Intel's Fortran Compiler to GNU	0.12%

Test Title	Test Description	Test Result (EET Failure Rate)
Compiler	Change from Intel's Fortran Compiler to GNU	0.12%
Core Count	Change from 36 cores to 96 cores	0.2%

Test Title	Test Description	Test Result (EET Failure Rate)
Compiler	Change from Intel's Fortran Compiler to GNU	0.12%
Core Count	Change from 36 cores to 96 cores	0.2%
Compiler Optimizations	Change from Intel -03 compiler optimizations to -01	0.12%

Test Title	Test Description	Test Result (EET Failure Rate)
Compiler	Change from Intel's Fortran Compiler to GNU	0.12%
Core Count	Change from 36 cores to 96 cores	0.2%
Compiler Optimizations	Change from Intel -03 compiler optimizations to -01	0.12%
Order of Operations	Change part of MPAS convection code to do a set of operations in a different, but mathematically equivalent, order.	1.67%

Test Title	Test Description	Test Result (EET Failure Rate)
Compiler	Change from Intel's Fortran Compiler to GNU	0.12%
Core Count	Change from 36 cores to 96 cores	0.2%
Compiler Optimizations	Change from Intel -03 compiler optimizations to -01	0.12%
Order of Operations	Change part of MPAS convection code to do a set of operations in a different, but mathematically equivalent, order.	1.67%
Precision	Change from double to single precision	100%

Test Title	Test Description	Test Result (EET Failure Rate)
Compiler	Change from Intel's Fortran Compiler to GNU	0.12%
Core Count	Change from 36 cores to 96 cores	0.2%
Compiler Optimizations	Change from Intel -03 compiler optimizations to -01	0.12%
Order of Operations	Change part of MPAS convection code to do a set of operations in a different, but mathematically equivalent, order.	1.67%
Precision	Change from double to single precision	100%
New Cluster	Run on default Derecho configuration (Intel compiler)	37.91%

Test Title	Test Description	Test Result (EET Failure Rate)
Compiler	Change from Intel's Fortran Compiler to GNU	0.12%
Core Count	Change from 36 cores to 96 cores	0.2%
Compiler Optimizations	Change from Intel -03 compiler optimizations to -01	0.12%
Order of Operations	Change part of MPAS convection code to do a set of operations in a different, but mathematically equivalent, order.	1.67%
Precision	Change from double to single precision	100%
New Cluster	Run on default Derecho configuration (Intel compiler)	37.91%
New Cluster (No FMA)	Run on default Derecho configuration (Intel compiler) but without FMA.	0.15%

Climate Changing Parameters

Parameter	Units	Description	Default Value
config_zd	m	Height MSL to begin w-damping profile.	22,000
config_xnutr	-	Maximum w-damping coefficient at model top	0.2
config_epssm	_	Off-centering parameter for the vertically implicit acoustic integration	0.1
config_coef _3rd_order	_	Upwinding coefficient in the 3rd order advection scheme	0.25

S

Perturbation Magnitude

S D

Perturbation Magnitude

Perturbation Magnitude

Ve detect scientific parameter changes down to 1% - 10% in magnitude.

CESM-CAM: Do we need to update our test parameters?

CAM 5.3

- 108 default variable outputs.
 - After exclusions of variables that introduce numerical issues in the test.
- *T* = 9 timesteps (4.5 hours)
- N_{PC} = 50
- m_{σ} = 2
- $N_{\rm ens} = 350$

- 275 default output variables
- New physics!

- 275 default output variables
- New physics!
- T > 7 timesteps

- 275 default output variables
- New physics!
- T > 7 timesteps
- $N_{\rm PC}$ = 128

- New physics!
- T > 7 timesteps
- N_{PC} = 128

•
$$m_{\sigma} = ?$$

- New physics!
- T > 7 timesteps
- N_{PC} = 128

•
$$m_{\sigma} = ?$$

- 275 default output variables
- New physics!
- *T* > 7 timesteps
- N_{PC} = 128
- $m_{\sigma} = 2.23$

- 275 default output variables
- New physics!
- *T* > 7 timesteps
- N_{PC} = 128
- $m_{\sigma} = 2.23$

- 275 default output variables
- New physics!
- T > 7 timesteps
- $N_{\rm PC}$ = 128
- $m_{\sigma} = 2.23$
- $N_{\rm ens} = 1650$

CAM 5.3

- 108 default variable outputs.
- *T* = 9 timesteps (4.5 hours)
- N_{PC} = 50
- m_{σ} = 2
- $N_{\rm ens} = 350$

- 275 default output variables
- New physics!
- T > 7 timesteps
- N_{PC} = 128
- $m_{\sigma} = 2.23$
- $N_{\rm ens} = 1650$

CAM 5.3

- 108 default
- *T* = 9 times
- $N_{\rm PC} = 50$
- $m_{\sigma} = 2$
- $N_{\rm ens} = 350$

CAM 6.3

but variables

Big change in test parameters many be required when model changes!

Back Slides

1.1) Start with set of initial conditions (IC's).

1.2) Perturb IC's to create ensemble.

1.3) Run model for simulation length T using ensemble of IC's to create ensemble of outputs.

1.4) Spatially average model outputs.

1.5) Use Principal Component Analysis to find orthogonal basis that explains most of the variance in the ensemble.

[Milroy et al. 2018]

1.6) Along with PCA transform, save PC distributions of ensemble to summary.

2.1) Run small set of perturbed runs using new model configuration.

2.2) Spatially average new model outputs.

