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Purpose of UF-ECT

ldentify inconsistencies between large
scientific model outputs run in different
configurations.
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O) Identify correct test
parameters for given model.
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How to Apply the UF-ECT to New Models?

1. Develop a recipe for applying the UF-
ECT to new models.

« Can we choose test parameters in a
cohesive way to: N PC

« Detect changes across our model.

« Ensure usability for model
developers.

2. Demonstrate our approach on a
different earth system model (MPAS-A)

3. ldentify if previous results are still
appropriate for updated CESM - CAM.
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1: How Long To Run Model?

Non-Normal Variables for CESM 2.3 vs Model Runtime
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/: How Long To Run Model?

- Using a common test for
normality (Shapiro-Wilks) and
waiting for the number of non-
normal variables to stabilize
was an easy way to determine
when the model had been run
long enough.
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Relative Bias (Proportion of True Variance)

Small Detour:
PCA Variance Estimation Bias

Predicted Variance Estimate Bias
for Linearly Decreasing True Variances

0.15 -

0.10 -

0.05 -

0.00 +-———-————-

—0.05 -

0 10 20 30 40 50
Principal Component Number

15



Relative Bias (Proportion of True Variance)

Small Detour:
PCA Variance Estimation Bias

Predicted Variance Estimate Bias

for Linearly Decreasing True Variances . Estimates Of PC variance are
biased according to:

0.15 -

0.10 -

0.05 -

0.00 +-———-————-

—0.05 -

0 10 20 30 40 50
Principal Component Number

15



Relative Bias (Proportion of True Variance)

Small Detour:
PCA Variance Estimation Bias

Predicted Variance Estimate Bias

for Linearly Decreasing True Variances e Estimates of PC variance are

| biased according to:
0.15 A
1 & /1]- y
0.10 - E(l)=4;]1 +;Z PR + O(1/n°)
j#i N\
0.05 - [Lawley, 1956]
0.00 F=====m===-
—0.05 -

0 10 20 30 40 50
Principal Component Number

15



Relative Bias (Proportion of True Variance)

Small Detour:
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Relative Bias

PCA Variance Bias, Samples: 1000, Test Repeats: 500
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Small Detour:
PCA Variance Estimation Bias

« Estimates of PC variance are
biased according to:
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[Lawley, 1956]

 Effect is large variances are
overestimated, small variances
are underestimated.



NPC: How Many PCA
Dimensions to Use?

- Bias changes our estimate of
1.00 - ,
0.95 T =========== === —mmmmmm = how many PC’s we need to
adequately capture our model.
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Minimum PCA Dimensions to Explain 95% Variance
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NPC: How Many PCA
Dimensions to Use?

» This changes our estimate of
how many PC’s we need to
adequately capture our model.

« We address this by
Increasing our ensemble size
until the number of PC
dimensions required to
describe 95% of our model
variance stabilizes.
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» Bilas can cause erroneous
failures due to underestimating
the variance of specific PC’s.
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False Positive Rate (F

MPAS False Positive Rate by Ensemble Size (38 Principal Components)
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N,,.: How Large

of an Ensemble?

» Bilas can cause erroneous
failures due to underestimating
the variance of specific PC’s.

» Overestimates don’t average
out in the UF-ECT design.

 |In order to limit bias in
individual PC’s we increase
ensemble size until false
positive rate (FPR) is
acceptable.



m_: How To Set Failure Cutoff?

_ma WZG

21



m_: How To Set Failure Cutoff?

. Originally settom_= 2.

Failure Cutoff

21



m_: How To Set Failure Cutoff?

. Originally settom_ = 2.
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m_: How To Set Failure Cutoff?

Theoretical False Positive Rate vs Principal Components Used
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m_: How To Set Failure Cutoff?

Theoretical False Positive Rate with m, =2.22
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Overall Approach

1. Determine an appropriate length to run a model.
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1. Determine an appropriate length to run a model.

- Want to make sure perturbations have propagated through the model.
2. Determine an appropriate number of PC’s to use.

- Make sure we capture most of the variance of the model.

» Also sets a minimum ensemble size.

3. Determine appropriate failure cutoff and ensemble size to prevent too
many erroneous failures.
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Model Across Prediction Scales

» |[n order to test our procedure
for determining UF-ECT
parameters we applied them to
a new model, MPAS-A.
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Model Across Prediction Scales

» |[n order to test our procedure
for determining UF-ECT
parameters we applied them to
a new model, MPAS-A.

« MPAS is a climate model based
around unstructured Voronoi
meshes.
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False Positives

Do additional runs from

the same configuration
fail?

Non-Climate
Changing
Modifications

Changes that might
lead to BFB changes,
but aren’t expected to
affect scientific
conclusions.

27

Climate Changing
Parameters

Does the test detect the
change of scientific
parameters?




Test Title

Test Description

Test Result (EET
Failure Rate)

EET = Run test with many different

ensembles / test runs
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Testing Non-Climate Changing Modifications

Test Result (EET
Failure Rate)

Compiler Change from Intel’s Fortran Compiler to GNU 0.12%

Test Title Test Description
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Testing Non-Climate Changing Modifications
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Testing Non-Climate Changing Modifications

Test Title Test Description TGSt. Result (EET
Failure Rate)
Compiler Change from Intel’s Fortran Compiler to GNU 0.12%
Core Count Change from 36 cores to 96 cores 0.2%
Compiler Change from Intel -O3 compiler optimizations to -0 0.12%
Optimizations
Order of Operations Change par’F of MPAS convection c?ode to d(? a set of operations in a 167%
different, but mathematically equivalent, order.

32



Test Result (EET

Test Title Test Description .
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Test Result (EET

Test Title Test Description .
Failure Rate)

Compiler Change from Intel’s Fortran Compiler to GNU 0.12%
Core Count Change from 36 cores to 96 cores 0.2%
Compiler Change from Intel -03 compiler optimizations to -O1 012%

Optimizations

. Change part of MPAS convection code to do a set of operations in a °

Order of Operations different, but mathematically equivalent, order. 1.67%
Precision Change from double to single precision 100%
New Cluster Run on default Derecho configuration (Intel compiler) 37.91%
New Cluster (No FMA) Run on default Derecho configuration (Intel compiler) 0.15%

but without FMA.
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Parameter Units Description Default Value
config zd m Height MSL to begin w-damping profile. 22,000
config_xnutr Maximum w-damping coefficient at model top 0.2
config_epssm Off-centering parame.te.r for the.vertlcally implicit 01
acoustic integration
config_coef Upwinding coefficient in the 3rd order advection 0.5

~3rd_order

scheme
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Parameters
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CESM-CAM: Do we need to
update our test parameters?



CAMS.3 CAMG6.3

« 108 default variable outputs. « 275 default output variables
- After exclusions of variables - New physics!
that introduce numerical issues
in the test.

« ['=9 timesteps (4.5 hours)
o NPC — 50
c M _=2

. N, =350



CAMG6.3

180 - « 275 default output variables

Non-Normal Variables for CESM 2.3 vs Model Runtime
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Minimum PCA Dimensions to Explain Variance

Minimum PCA Dimensions to Explain
95% Variance in CESM 2.3 vs Sample Size
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CAMG6.3

Theoretical False Positive Rate vs Principal Components Used
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False Positive Rate (FPR)

Theoretical False Positive Rate with m,=2.23
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False Positive Rate (FPR)

Theoretical False Positive Rate with m,=2.23
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False Positive Rate (FPR)

CESM 2.3 False Positive Rate by Ensemble Size
128 Principal Components, mgs=2.23
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CAMS.3 CAMG6.3

« 108 default variable outputs. « 275 default output variables
. T =9 timesteps (4.5 hours) » New physics!

+ Np-=50 . T'>7 timesteps

e m_=2 + Npc =128

. N, . =350 e m_=2.23

. N, =1650



« 108 default

e ['=9 times

CAMG6.3

yut variables

CAMS.3

+ Npe =50 Big change in test parameters

C o =D many be required when model
O

changes!

. N =350
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The UF-ECT: Part 1

1.1) Start with set of initial conditions
(IC’s).
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The UF-ECT: Part 1

1.2) Perturb IC’s to create ensemble.
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The UF-ECT: Part 1

1.3) Run model for simulation length 7 using
ensemble of IC’s to create ensemble of outputs.
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The UF-ECT: Part 1

1.4) Spatially average model outputs.

Variable N

Variable 3

Variable 2

Spatially
Average

Variable 1

CESM time step

[Milroy et al. 2018]
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The UF-ECT: Part 1

1.5) Use Principal Component Analysis to find orthogonal
basis that explains most of the variance in the ensemble.

Variable N

Variable 3

X2

CESM time step
x1

[Milroy et al. 2018]
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The UF-ECT: Part 1

1.6) Along with PCA transform, save PC distributions of
ensemble to summary.

PCA

Transform
PC #1 [//t19 Gl] /

e u...,o...] \ k

Summary
File
PC #Np- [//thca GNPC]
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The UF-ECT: Part 2

2.1) Run small set of perturbed runs using new model
configuration.




The UF-ECT: Part 2

2.2) Spatially average new model outputs.

Spatially
Average



The UF-ECT: Part 2

. Summary
2.3) Transform new average outputs using File
saved PCA transform.

PCA

Tra nsform

Spatlally
Average




The UF-ECT: Part 2

2.4) Compare transformed outputs to original New Run
distributions. Issue pass/fail based on result.

Cg S PCA PC #1
\ Transform

Spatlally /

Average

PC #Np -



