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Motivation:
• US DOE’s Energy Exascale Earth System Model (E3SM) project:

– Effectively exploit DOE’s leadership class HPC capabilities
• Improving model trust-worthiness

• Code Evolution:
– Bit-for-bit reproducing changes

• E.g. Adding a new compset, new output variable, new stealth feature, etc.

– Non-b4b changes
• Different climate (statistics) expected

• E.g. New parameterizations modules, new tunings
• Same climate (statistics) expected

• E.g. code porting, refactoring, GPU kernel, minor bug-fixes, etc.

• Goal: Test the null hypothesis that climate simulation remains statistically 
equivalent after unintended non-b4b changes.
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Error growth in climate systems
• Truncated Floating Point arithmetic: 

– Round-off errors
– Non-associative: 

• (-1 + 1) + 2-53 ≠ -1 + (1 + 2-53)

– Optimizations, hybrid architectures, code 
refactoring, etc. can change the order of operations.

• Climate models:
– Chaotic, non-linear system

• Round-off differences grow quickly

• Problem: Identify systematic bugs from innocuous error 
growth in non-BFB reproducible environment.

Lorenz attractor 
(Source:en.wikipedia.org/wiki/Chaos_theory)

H. Wan et al.: Solution reproducibility test 539

Figure 1. Examples of the evolution of root mean square (rms) temperature difference (unit: K) caused by random perturbations of the
order of 10�14 K imposed on the temperature initial conditions. (a) Aqua-planet simulations conducted with the CAM4 (blue) and CAM5.3
(red) physics parameterization suites using the default 1800 s time step. (b) Simulations conducted with the CAM5.3 physics suite using the
default 1800 s time step and with radiation calculated every other step (red), using a 1 s time step and with radiation calculated every other
step (purple), and using a 1 s time step and with radiation calculated only once at the beginning of the integration. All simulations used the
spectral element dynamical core at approximately 1� horizontal resolution.

Rosinski and Williamson (1997) noted that dynamical-
core-only simulations typically showed much slower growth
of initial perturbation, and this characteristic remains true in
newer model versions. For example, using the default config-
uration of CAM5’s spectral element dynamical core (Taylor
and Fournier, 2010; Dennis et al., 2012) at 1� spatial reso-
lution, the temperature RMSD only reaches O(10�12) K by
day 2, suggesting that the rapid growth shown in Fig. 1a is
due to the physics parameterizations. Efforts have been made
to understand the cause of the rapid growth, and those find-
ings will be detailed in a separate paper (Singh et al., 2017).
Here we provide only a brief description of three causes.

First, the default time step of 1800 s in CAM5 is sizable
compared to the characteristic timescales of many physi-
cal processes represented by the model; therefore, the in-
crements in the model state during one time step (i.e., the
process tendencies times the model time step) are signifi-
cant, and the differences between a pair of simulations with
slightly different initial conditions can also be perceptible.
The red and purple curves in Fig. 1b show that when the time
step sizes of all model components are changed by a factor
of 1800, the solution differences after the same number of
time steps also change by a similar ratio. Longer model time
steps lead to larger increments from the simulated physical
processes, but not necessarily so for software or hardware is-
sues. Therefore, the growth of perturbation in a model with
long time steps can make it difficult to expose solution dif-
ferences caused by a new computing environment.

The second reason for rapid perturbation growth is related
to the fact that the radiation parameterization in CAM5 uses a
pseudo random number generator, and the seeds for the gen-
erator are chosen from the less significant digits of the pres-

sure field. This effectively introduces state-dependent noise
into the numerical solution. The green curve in Fig. 1b shows
the differences between a pair of simulations conducted with
1 s time step but with radiation calculated only once at the
beginning of the integration. Compared to the purple curve
where radiation was calculated every other time step, the so-
lution differences were further reduced by about 3 orders of
magnitude. We note that the noisiness from the radiation cal-
culation can be controlled by making the random seeds inde-
pendent of the model state so that the random series become
reproducible from one simulation to another; but more gen-
erally, the radiation example also implies that models with
state-dependent stochastic parameterizations might feature
more rapid perturbation growth than those using determin-
istic schemes.

The third reason for rapid perturbation growth has to do
with particular pieces of code. Two types of examples were
discussed in Rosinski and Williamson (1997): (i) an upshift-
in-digit of solution difference resulting from division by a
small number, and (ii) “if” statements associated with algo-
rithmic discontinuity. We have experienced both types of sit-
uations in the CAM5 code, although the specific formulae
were different from those given by Rosinski and Williamson
(1997). Compared to its predecessors, CAM5 uses modern
parameterizations with substantially more detailed descrip-
tion of the atmospheric phenomena, and the model also car-
ries an expanded list of tracers. The increase in model com-
plexity and the corresponding growth in the size of the code
substantially increase the chance for similar situations to oc-
cur.

The examples shown in Fig. 1b indicate that it is possible
to identify reasons for perturbation growth, with the potential

www.geosci-model-dev.net/10/537/2017/ Geosci. Model Dev., 10, 537–552, 2017

Evolution of root mean square temperature difference caused by 
random perturbations of the order of 10−14 K imposed on the 
temperature initial conditions (Wan et al. 2017)
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E3SM Testing
• E3SM Testing Suite (bfb):

– * APT (auto promotion test (default length))
* CME (compare mct and esmf interfaces (10 days))
* ERB (branch/exact restart test)
* ERH (hybrid/exact restart test)
* ERI (hybrid/branch/exact restart test, default 3+19/10+9/5+4 days)
* ERS (exact restart from startup, default 6 days + 5 days)
* ERT (exact restart from startup, default 2 month + 1 month (ERS with
info dbug = 1))
* ICP (cice performance test)
* LAR (long term archive test)
* NCK (multi-instance validation vs single instance (default length))
* NOC (multi-instance validation for single instance ocean (default length))
* OCP (pop performance test)
* P4A (production branch test b40.1850.track1.1deg.006 year 301)
* PEA (single pe bfb test (default length))
* PEM (pes counts mpi bfb test (seq tests; default length))
* PET (openmp bfb test (seq tests; default length))
* PFS (performance test setup)
* PRS (pes counts hybrid (open-MP/MPI) restart bfb test from startup,
default 6 days + 5 days)
* SBN (smoke build-namelist test (just run preview_namelist and
check_input_data))
* SEQ (sequencing bfb test (10 day seq,conc tests))
* SMS (smoke startup test (default length))
* SSP (smoke CLM spinup test (only valid for CLM compsets with CLM45 and
CN or BGC))

• Non-bit-for-bit changes:
– Convergence test, perturbation growth test and climate reproducibility tests
– Expert opinion, ad-hoc tests

The main thing that distinguishes legacy code from non-legacy code is tests, or rather a lack of tests.
 –Michael Feathers 
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Initial Condition Simulation Ensemble 
• T’j = (1+x’)Tj

• x’ is uniform random number transformed to range from (-10-14, 10-14)

Chaotic nature of the climate 
system: L1 Norm of 
temperature at 850mb as 
compared to a control run for a 
100 EAM runs differing only in 
initial conditions perturbed by 
machine precision levels.
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Two Sample Testing Using Ensembles
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• Goal:
• Evaluate statistics of the modified ensemble vs. 

control ensemble after propagation of errors from 
machine precision differences in initial conditions.

• Short (1 yr) ensembles

• Problem statement: 
• Multivariate two sample equality of distribution 

testing:
• NULL hypothesis: Statistically Equivalent
• High dimensions (121 variables)
• Low sample sizes (~30 ensemble members)

• Approach:
• Use statistical/ML approaches for two sample 

equality of distribution tests: kernel test, energy test, 
Kolmogorov-Smirnov (KS) test
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Equality of Distribution Tests
• Energy Test (e.g. Szekely and Rizzo, 2004): 

– e-distance metric

– Small values of e indicate same population
– Derive null distribution by resampling

These multivariate two-sample tests of equality of distributions have never been applied to climate mod-669

eling studies and it is not obvious a priori which tests would be most suitable for distinguishing climate670

statistics. We propose to use three popular classes of tests to test the null hypothesis that the baseline and671

the modified model simulation ensembles belong to the same population. We will generate short simulation672

(⇠1 yr) ensembles for both the baseline and the perturbed model. Our tests will use all the standard model673

output variables from the two ensembles. These tests are briefly illustrated for the global annual mean of the674

output variables below:675

• Cross Match Test: Standardized global annual means of all output variables are concatenated into676

a single multivariate vector for each ensemble member. The n baseline and m perturbed multivariate677

vectors are pooled together into a single set of size N = n+m and each vector in the resulting set is678

optimally paired with the vector closest to it, such that the total distance between each pair is mini-679

mized, for some distance metric (e.g. L1-norm, L2-norm, Mahalanobis distance, fractional distance,680

etc.). The cross-match test statistic, T , is defined as the number of pairs with one vector from each of681

the control and perturbed ensembles (cross-match). The probability that T is equal to some specific682

value a1 if the null hypothesis is true is given by:683
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2a1(N/2)!�N
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The distribution T is based on simple combinatorics, so it does not depend on the assumed distribution684

of the baseline or perturbed data vectors (Rosenbaum, 2005). When the baseline and the perturbed685

distributions are similar, cross-matches should occur more frequently. The null hypothesis is rejected686

if T > t for a critical value t computed from Eq. 1 to match a desired significance level.687

• Energy test: The energy test is based on the concept of energy statistics of Székely and Rizzo (2004),688

where they define the test statistic e-distance, e, as:689
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where X1, . . . ,Xn and Y1, . . . ,Ym are the multivariate vectors of the baseline and perturbed ensembles.690

Large values of e correspond to different distributions of the two samples. Here, kA�Bk represents691

some measure of distance between two vectors. The null distribution of e is not distribution-free but a692

permutation test approach provides a distribution-free test: The data vectors are pooled together and693

randomly resampled into the two groups and the e-distance ek is computed for each such permutation,694

k. If all distinct possible permutations are drawn, then the permutation test is exact. The values of e695

from these permutations then describe the null distribution of e. For, a significance level of a, the null696

hypothesis is rejected if e > 100(1�a)% of the permuted estimates of ek.697

• Kernel Test: In a kernel two-sample test, a smooth function (kernel) is fitted to each to the multivariate698

vectors of the two ensembles such that the function values are large for vectors of one ensemble and699

small for the other (Gretton et al., 2006). The test statistic is the distance between the mean of function700

values over the two ensembles, called the Maximum Mean Discrepancy (MMD). If the two ensembles701

belong to the same population then we expect small values of MMD. Functions in the reproducing702

kernel Hilbert space (RKHS) like the Gaussian and the Laplace kernels have favorable properties703

suitable for the kernel test (Gretton et al., 2006). An empirical estimate of the test statistic is given by:704
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Schematic: Energy Test Schematic: Null Distribution

Sum of Blue lines Sum of Grey lines

X Y
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Equality of Distribution Tests
• Kolmogorov Smirnov (KS) - Testing 

Framework:
– Null Hypothesis (H0): Two ensembles represent the 

same climate state.

 

– Use global annual means of standard model output 
variables (121 variables).

–  H0: Local Null hypothesis for each variable

– Test H0  (for each variable) using a KS test.

– Test statistic (t): No. of variables that reject H0 at a 
given confidence level (Type I Error Rate), say 95%.

– Null distribution of t: Resampling (150 member 
ensemble)

– Critical value of t: 13

 

Schematic Illustration: KS test
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Test Case: Known Climate Changing Perturbation
• Model: DOE E3SM v1

• Configuration: Active atmosphere land, prescribed cyclical F2000 SSTs and sea-ice 
distribution (FC5)

• Spatial Resolution: ~500km at the equator (5 degrees), 30 vertical layers

• Ensembles: Machine-precision level random perturbations to the initial 3-D temperature field
• 30 member 1-yr ensembles
• T’j = (1+x’)Tj, x’ is random number transformed to range from (-10-14, 10-14)

• Peturbation: Modify a model tuning parameter: 
• zm_c0_ocn (control case: 0.007, modified: 0.045)
• Deep convection scheme parameter controlling conversion rate of cloud droplets to 

precipitation

Both KS-test and Energy test reject the null hypothesis
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Type II Error Rate (False Negatives)

• What does it mean if the test is a pass?

• What is the false negative rate?

• How small a change than the test detect confidently?
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Power Analysis (Type II Error rate)
Type II error rate: Probability of accepting a false null hypothesis

• Turn a tuning parameter knob incrementally: zm_c0_ocn (0.007 to 0.045)

• Ensembles: 
• 100 members for each case
• T’j = (1+x’)Tj, x’ is random number transformed to range from (-10-14, 10-14)

• Power Analysis:
• Resampling:

• Randomly pick N=30 (=40, 50, 60) members from the control and modified 
ensembles

• Conduct test
• Repeat (500 times)
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Power Analysis: KS Testing Framework

Example of Power Analysis. 
Probability of correctly rejecting a 
false null hypothesis (Power) of the 
test in detecting changes to a EAM 
tuning parameter from a control 
case (zm_c0_ocn = 0.0070) for 
different short simulation (1yr) 
ensemble sizes (N).

Mahajan et al. 2019

Controlled changes to zm_c0_ocn (default value = 0.0070)
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Power Analysis
Controlled changes to zm_c0_ocn (default value = 0.0070)

PASC ’19, June 12–14, 2019, Zurich, Switzerland Mahajan, Evans, Kennedy, Xu, and Norman
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Figure 1: Power Analysis of the three tests for the zm_c0_ocn experiment set (ZM_SET): (a) energy test, (b) kernel test and (c)
KS testing framework. Empirically (random sampling) estimated statistical Power (1� �) - probability of rejecting a false null
hypothesis - of the test at the 95% con�dence level for di�erent ensemble sizes (N = 30, 40, 50, 60). The null hypothesis that
two simulation ensembles are statistically identical is tested for each perturbed zm_c0_ocn case against the zm_c0_ocn = 0.007
case. Figure 1c is reproduced from Mahajan et al. [7].
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Figure 1: Power Analysis of the three tests for the zm_c0_ocn experiment set (ZM_SET): (a) energy test, (b) kernel test and (c)
KS testing framework. Empirically (random sampling) estimated statistical Power (1� �) - probability of rejecting a false null
hypothesis - of the test at the 95% con�dence level for di�erent ensemble sizes (N = 30, 40, 50, 60). The null hypothesis that
two simulation ensembles are statistically identical is tested for each perturbed zm_c0_ocn case against the zm_c0_ocn = 0.007
case. Figure 1c is reproduced from Mahajan et al. [7].
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Mahajan et al. 2019
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Power Analysis
Controlled changes to dcs (default value = 400.0) tuning parameter in Cloud 
Microphysics

Energy Test Kernel Test KS Testing Framework
Multivariate Approach to Ensure Stat. Reproducibility of Climate Model Simulations PASC ’19, June 12–14, 2019, Zurich, Switzerland
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Figure 2: Power Analysis of the three tests for the dcs experiment set (MICRO_SET): (a) energy test, (b) kernel test and (c) KS
testing framework. Empirically (random sampling) estimated statistical Power (1 � �) - probability of rejecting a false null
hypothesis - of the test at the 95% con�dence level for di�erent ensemble sizes (N = 30, 40, 50, 60). The null hypothesis that
two simulation ensembles are statistically identical is tested for each perturbed dcs case against the dcs = 400.0 case.
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Multivariate Approach to Ensure Stat. Reproducibility of Climate Model Simulations PASC ’19, June 12–14, 2019, Zurich, Switzerland
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Figure 2: Power Analysis of the three tests for the dcs experiment set (MICRO_SET): (a) energy test, (b) kernel test and (c) KS
testing framework. Empirically (random sampling) estimated statistical Power (1 � �) - probability of rejecting a false null
hypothesis - of the test at the 95% con�dence level for di�erent ensemble sizes (N = 30, 40, 50, 60). The null hypothesis that
two simulation ensembles are statistically identical is tested for each perturbed dcs case against the dcs = 400.0 case.

Mahajan et al. 2019
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Power Analysis: Atmosphere tests

• Expand on Power Analysis:
– More tuning parameters

• ice_sed_ai
• sol_factb_interstitial
• sol_factic_interstitial
• cldfrc_dp1
• zm_conv_lnd
• dcs
• zm_conv_ocn
• zm_conv_dmpdz

• KS testing framework most powerful:
– detects changes of smaller magnitudes 

confidently
– compared to Kernel and Energy test.

0

0.2

0.4

0.6

0.8

1

1.2

397 395 392 390 385 375 350 325 300 200 100

Po
w

er

dcs

Power Analysis of Energy Test

N= 30 N = 40 N = 50 N = 60

0

0.2

0.4

0.6

0.8

1

1.2

397 395 392 390 385 375 350 325 300 200 100

Po
w

er

dcs

Power Analysis of KS Testing Framework

N= 30 N = 40 N = 50 N = 60

a. b. c.

Example of Power Analysis. Probability of correctly rejecting a 
false null hypothesis (Power) of the test in detecting changes to a 
EAM tuning parameter from a control case (dcs = 400) for different 
short simulation (1yr) ensemble sizes (N).

Mahajan et al. 2019
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EVV4ESM
• Extended Verification and Validation 

for Earth System Models 
(EVV4ESM):

• Python based toolkit

• Runs control and new 
ensembles

• Post-processes model output

• Conducts reproducibility tests

• Publishes results and auxiliary 
plots, tables  
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Real World Test Cases
• New backwards compatible feature (chemistry) introduced climate changing behavior

– Reproducibility test flagged climate changing behavior

– Evaluation, retraction and bug-fix.

• Bug fix (aqueous chemistry) introduced climate changing behavior 

Feature 
Introduced

Feature 
Retracted

Bug-fix 
Introduced

Bug-fix 
Retracted
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Ocean Model Reproducibility tests: Approach

• Generate control and perturbed ensembles at QU240 
resolution:
– 7153 grid points per vertical level
– 60 vertical levels

• Evaluate 5 prognostic variables (Baker et al. 2016)
– SSH, T, U, V, Salinity 
– Annual average of year 2.

• Ocean variability is spatially more heterogenous (as compared 
to the atmosphere):
– Evaluate at each grid point.

• Conduct fine-grained null hypothesis tests at each grid point: 
– Two sample KS test: Popular non-parametric test 
– Cucconi test: Better power, rank based non-parametric test. 

Growth of Round-off differences in MPAS-O

Larger Null Hypothesis: Control and perturbed ensembles belong to the same population

Growth of machine precision differences in oQU240 MPAS-O and ensemble spread: L1 Norm (sum of 
absolute difference at each grid point, log-scale) of SST of each of the 100 ensemble members with 
round off differences in initial conditions compared to a reference run for the control (kappa = 1800, 
red lines) and modified (kappa = 600, blue lines) ensembles. 
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Ocean Model Reproducibility Tests: Approach

False Discovery Rate (FDR) approach (Wilks et al. 2006, Ventura et al. 2004):

– For single test, null hypothesis is rejected if:
• Test statistic p-value (p) is less than a critical value, a (say 0.05): p <= a
• For M tests, aM  would be rejected for true null hypotheses just by chance

– For multiple tests, FDR constrains critical value (aFDR) for local hypothesis tests (H0):

– Global Null Hypothesis Test (G0): Reject if pj <= aFDR at any grid point.
– Robust for correlated tests – e.g. spatial correlations (Wilks et a. 2006, Renard et al. 2008). 
– Used in testing field significance

Confidential manuscript submitted to JGR-Atmospheres

ate to study extremes over those data points. We find that a few grid (⇡5%) points exhibit sig-172

nificant auto-correlation at the 5% level in the observational data over mainland Europe and173

US. But, a larger fraction of points over Greenland and North America exhibit significant auto-174

correlation. However, not all of these lead to a failure of the KS goodness of fit test. Less than175

1% of data points show significant auto-correlation in monthly maxima of precipitation ex-176

tremes in the winter season for both model ensembles.177

To capture the influence of NAO on extremes, the base GEV model is modified to in-178

clude the NAO index as a covariate in the location parameter term as µ = µ0+↵.NAO(t),179

where NAO(t) is the NAO index for the corresponding winter month, t, and ↵ represents the180

linear rate of change of the location parameter with the NAO index. The parameters of the GEV(µ0+181

↵.NAO(t),�, ⇠) model, including ↵, are again computed by the maximum log-likelihood method182

to fit a GEV distribution. We call this GEV model the NAO GEV model, hereafter. Here, we183

do not investigate the non-linear impacts of NAO on the location parameter as or its impacts184

on the scale and shape parameters, which will be the subject of future studies. Theoretically,185

the distribution of GEV parameters is approximately multivariate normal with a variance-covariance186

matrix that can be computed at the maximum likelihood estimates [Coles, 2001].187

To establish the significance of adding a NAO covariate to the base model (i.e to ensure188

that the NAO GEV model is significantly different than the BASE GEV model), we use the189

likelihood-ratio test. The likelihood-ratio test is based on the deviance statistic - difference in190

the maximized log-likelihoods between the NAO GEV model and the base model [Coles, 2001]191

- at each grid point. If the p-value of the deviance statistic is less than a prescribed critical value192

(↵), the null hypothesis that the NAO GEV model and the base GEV model are statistically193

similar is rejected. When a single hypothesis is being tested, the critical value is the given sig-194

nificance level of testing (↵, say 0.05). But, when multiple hypotheses (say M ) are being tested195

simultaneously (one for each grid point, here), M↵ hypotheses will be erroneously rejected196

just by chance even if all the null hypotheses were true [e.g. Wilks, 2006]. To appropriately197

control for falsely rejecting such true null hypotheses, we use the false discovery rate (FDR)198

approach [Renard et al., 2008; Wilks, 2006; Ventura et al., 2004] to compute a constrained crit-199

ical value, ↵FDR, for a given global significance level, ↵, as follows:200

↵FDR = max
j=1,2,...,M

{pj : pj  ↵(j/M)} (2)

–7–

Correct for simultaneous multiple null hypothesis tests (M grid points)

pj are sorted p-values of 
M tests
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FDR Approach: Illustration
4346 VOLUME 17J O U R N A L O F C L I M A T E

FIG. 2. Illustration of the traditional FPR and FDR procedures on
a stylized example, with q 5 a 5 20%. The ordered p-values, p(i),
are plotted against i/n, i 5 1, . . . , n, and are circled and crossed to
indicate that they are rejected by the FPR and FDR procedures, re-
spectively.

TABLE 1. Quantities relevant to traditional FPR and new FDR procedures. The information that is known is indicated in bold. FPP, FNP,
FDP, and FNDP indicate, respectively, the observed false positive, negative, discovery and nondiscovery proportions, and FPR, FNR, FDR,
FNDR indicate the corresponding expected proportions, which we refer to as rates; for example, E(FDP) 5 FDR.

TRUTH

Decision

Maintain H0 Reject H0 Row totals
Quantities relevant to
FPR procedures

H0 n 2 nFPH0

No. correctly maintained

nFP

No. of false positives

nH0
No. of true H0

FPP 5
nFP
nH0

FPR5 a

HA nFN

No. of false negatives

n 2 nFNHA

No. correctly rejected

nHA
No. of false H0

FNP 5
nFN
nHA

FNR 5 ??
Column totals naccept

No. of maintained H0

nreject
No. of rejected H0

n (# of tests)

Quantities relevant to FDR FNDP 5
nFN
naccept

FNDR # a
(see section 4)

FDP 5
nFP
nreject

FDR # q

p-value that lies below the (0, q) line, indicated on Fig.
2 by an arrow.
Figure 2 also shows that, although the FDR rejection

rule is complicated, effectively all p-values below a cer-
tain threshold are rejected, since the p-values are plotted
in ascending order. This yields two remarks. First, this
explains why the three sets of rejected null hypotheses
in Fig. 1 were nested subsets: the implicit FDR threshold
was between the significance levels of the two FPR
procedures, a 5 5% and the Bonferroni-corrected a 5
n21 3 5%.
Second, this suggests that the outcome of the FDR

procedure could have been obtained with a traditional
FPR procedure with some cleverly chosen a. So why
bother with an FDR testing procedure? The answer,
which we develop further in the next section, is that
FDR procedures control false rejections in a meaningful
way.

b. Controlling mistakes

When we reject or fail to reject a particular H0, we
may either make the correct decision or make one of
two mistakes: reject when H0 is in fact true or fail to
reject when H0 is in fact false. These mistakes are com-
monly referred to as false positive and false negative
detections and also as type I and type II errors. We
denote by nFP and nFN the numbers of such mistakes out
of the n tests (see Table 1). Since the truth is unknown,
we use testing procedures that control these errors. Both
FPR and FDR procedures control the number of false
positive detections nFP in different ways, but neither (nor
any testing procedure we know) controls the number of
false negative detections. It is easy to see why; once a
or q is chosen, the decisions about the hypotheses, as
carried out in Fig. 2, are determined; there is no room
left to control the number of false negatives.
For a traditional FPR procedure, the choice of a de-

termines the properties of the test; a is the probability
of rejecting any particular H0 by mistake, which means
that on average, a% of the n locations for which H0H0
is true will be found significant by mistake. We report
this in Table 1 as

FPP 5 n /n , FPR 5 E(FPP) 5 a,FP H0 (3)

where FPP is the observed false positive proportion,
and E stands for expectation. The FPP/FPR notation is
consistent with standard statistical terminology, where
the expectation of an observed ‘‘proportion’’ is usually
referred to as a ‘‘rate.’’ Equation (3) justifies our calling
a the FPR.
What (3) means is that the number nFP of false pos-

itives that a traditional FPR procedure allows is pro-
portional to the unknown number n of true null hy-H0
potheses. So, for example, if most or all locations have
n true, this test will yield a large number of falseH0
positive detections, as we will later illustrate in Fig. 3.
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ate to study extremes over those data points. We find that a few grid (⇡5%) points exhibit sig-172

nificant auto-correlation at the 5% level in the observational data over mainland Europe and173

US. But, a larger fraction of points over Greenland and North America exhibit significant auto-174

correlation. However, not all of these lead to a failure of the KS goodness of fit test. Less than175

1% of data points show significant auto-correlation in monthly maxima of precipitation ex-176

tremes in the winter season for both model ensembles.177

To capture the influence of NAO on extremes, the base GEV model is modified to in-178

clude the NAO index as a covariate in the location parameter term as µ = µ0+↵.NAO(t),179

where NAO(t) is the NAO index for the corresponding winter month, t, and ↵ represents the180

linear rate of change of the location parameter with the NAO index. The parameters of the GEV(µ0+181

↵.NAO(t),�, ⇠) model, including ↵, are again computed by the maximum log-likelihood method182

to fit a GEV distribution. We call this GEV model the NAO GEV model, hereafter. Here, we183

do not investigate the non-linear impacts of NAO on the location parameter as or its impacts184

on the scale and shape parameters, which will be the subject of future studies. Theoretically,185

the distribution of GEV parameters is approximately multivariate normal with a variance-covariance186

matrix that can be computed at the maximum likelihood estimates [Coles, 2001].187

To establish the significance of adding a NAO covariate to the base model (i.e to ensure188

that the NAO GEV model is significantly different than the BASE GEV model), we use the189

likelihood-ratio test. The likelihood-ratio test is based on the deviance statistic - difference in190

the maximized log-likelihoods between the NAO GEV model and the base model [Coles, 2001]191

- at each grid point. If the p-value of the deviance statistic is less than a prescribed critical value192

(↵), the null hypothesis that the NAO GEV model and the base GEV model are statistically193

similar is rejected. When a single hypothesis is being tested, the critical value is the given sig-194

nificance level of testing (↵, say 0.05). But, when multiple hypotheses (say M ) are being tested195

simultaneously (one for each grid point, here), M↵ hypotheses will be erroneously rejected196

just by chance even if all the null hypotheses were true [e.g. Wilks, 2006]. To appropriately197

control for falsely rejecting such true null hypotheses, we use the false discovery rate (FDR)198

approach [Renard et al., 2008; Wilks, 2006; Ventura et al., 2004] to compute a constrained crit-199

ical value, ↵FDR, for a given global significance level, ↵, as follows:200

↵FDR = max
j=1,2,...,M

{pj : pj  ↵(j/M)} (2)

–7–

Ventura et al. 2004
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Ocean Model Reproducibility Tests: 
Type I Error Rate

• Bootstrap with Control Ensemble (150 ensemble members):

• Randomly draw two samples with N=M=30 members
• Conduct KS test and Cucconi test for alpha = 0.05
• Repeat 500 times
• For SSH (7153 ocean cells)

• KS test:
• 95th percentile of the no. of cells rejecting the local null hypothesis (FDR) = 0
• 95th percentile of the no. of cells rejecting the local null hypothesis = 426

• Cucconi test:
• 95th percentile of the no. of cells rejecting the local null hypothesis (FDR) = 15
• 95th percentile of the no. of cells rejecting the local null hypothesis = 643
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Ocean Model Reproducibility Tests: Test case

Growth of machine precision differences in oQU240 MPAS-O and ensemble spread: L1 
Norm (sum of absolute difference at each grid point, log-scale) of SST of each of the 100 
ensemble members with round off differences in initial conditions compared to a reference 
run for the control (kappa = 1800, red lines) and modified (kappa = 600, blue lines) 
ensembles. 

Known Climate Changing Case: GM Kappa = 600 (Default = 1800)
30 member ensembles for test and control case

Both tests reject the null 
hypothesis that the two 
ensembles belong to the 
same population at the 0.05 
significance level.
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Ocean Model Reproducibility Tests: Power Analysis
Type II error rate: Probability of accepting a false null hypothesis

• Turn a tuning parameter knob incrementally: 
• Gent and McWilliams kappa (600 to 1800)

• Ensembles: 
• 100 members for each case
• T’j = (1+x’)Tj, x’ is random number transformed to range from (-10-14, 10-14)

• Power Analysis:
• Randomly pick N=30 (=40, 50, 60) members from the control and perturbed sets
• Conduct test
• Repeat (500 times)
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Power Analysis of KS Testing Framework

N= 30 N = 40 N = 50 N = 60

Ocean Model Reproducibility Tests: Power Analysis
Controlled changes to GM kappa (default value = 1800)

Power Analysis. Probability of correctly rejecting a false null hypothesis (Power) of the test in detecting 
changes to a MPAS-O tuning parameter from a control case (GM kappa = 1800) for different ensemble 
sizes (N).



2525

Summary:
• Use short ensembles for model verification as ESMs adapts for Exascale: GPU ports, AI/ML based kernels, etc.

• Developed a multivariate testing framework for climate reproducibility after perturbation growth in atmosphere and ocean models :

– EVV4ESM toolkit

• Power Analysis of tests to evaluate their detection limits

• Test Cases:

• Known climate changing perturbations: tuning parameter changes

• Compiler optimization choices, reproducibility of frozen model after months of software updates

• Real world scenarios/success stories: Machine ports, climate changing bug-fixes, climate changing stealth features, etc.

• Future work: 

– Apply to other known test cases with non-b4b changes

– Evaluate applicability of low-resolution results at high-resolution

– Apply FDR correction to the atmosphere KS testing framework

– Evaluate other ML based tests

– Build tests for individual software kernels: e.g. individual physics packages like RRTMGP, MG2, CLUBB, MAM4, etc.

– Build tests for other modeling components – sea-ice, land



2626

Thanks!
• Acknowledgements:

– DOE E3SM Project and CMDV-SM Project
– Oak Ridge Leadership Computing Facility (OLCF)
– Argonne Leadership Computing Facility (ALCF)
– National Energy Research Scientific Computing (NERSC)

• References:
– Mahajan S., A. L. Gaddis, K. J. Evans and M. R. Norman, 2017: Exploring an ensemble-based approach to atmospheric climate modeling 

and testing at scale, Procedia Computer Science, 108, 735-744, doi: 10.1016/j.procs.2017.05.259
– Mahajan, S., K. J. Evans, Joe Kennedy, M. L. Branstetter, M. Xu, M. Norman (2019): “A multivariate approach to ensure statistical 

reproducibility of climate model simulations”, Proceedings of the Platform for Advanced Scientific Computing (PASC) 2019
– Mahajan, S., K. J. Evans, Joe Kennedy, M. L. Branstetter, M. Xu, M. Norman (2019): “Ongoing solution reproducibility of earth system 

models as they progress toward exascale computing”, Special Issue for Computational Reproducibility at Exascale Workshop, 2017, Super 
Computing 2017 in International Journal of High Performance Computing Applications

– Mahajan, S. (2021): Ensuring Statistical Reproducibility of Ocean Model Simulations in the Age of Hybrid Computing, Platform for 
Advanced Scientific Computing, Association for Computing Machinery, New York, NY, USA, Article 1, 19, 
https://doi.org/10.1145/3468267.3470572

https://doi.org/10.1145/3468267.3470572


2727

Test Case: Cori vs. Edison

• Conducted short simulation (1yr) ensembles on both 
Edison and Cori:

– F1850C5-CMIP6 compset
– ne4 (100 ensemble members)
– ne30 (30 ensemble members)

• All three - TSC (Wan, et al.), perturbation growth (Singh, 
et al.),  and KS - climate reproducibility tests passed.

• Implications: Cori can be confidently used for remaining 
DECK simulations

Evaluate if E3SMv1 DECK simulations on 
Edison can be reproduced on Cori

11/16/19, 9'32 AME3SM Floating Points, August ʼ19: E3SM Moving Toward Version 2

Page 1 of 8https://mailchi.mp/7757111dc993/e3sm-floating-points-august-19-e3sm-moving-toward-version-2?e=8f20565b89

August 14, 2019
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Significance Level (Type I Error Rate): Resampling
• Simulations from the two ensembles of size n 

and m are pooled together.

• Simulations from the pool are then randomly 
assigned to one of two groups of sizes n and m. 

• The t-statistic is then computed for the random 
drawing. 

• Repeat

• If all possible random drawings are made, the 
null distribution of t is exact. 

– We conduct 500 drawings - approximate null 
distribution. 
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KS Testing Framework Results

Comparison Test Statistic (t) Critical No. H0 Test

Default vs. perturbed c0_ocn 119 13 Reject

Name Description Ens. Size
Default c0_ocn Default model settings 30
Perturbed c0_ocn Perturbed model parameter 30
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Equality of Distribution Tests
• Kolmogorov Smirnov (KS) - Testing 

Framework:
– Null Hypothesis (H0): Two ensembles 

represent the same climate state.
 
– Use global annual means of standard model 

output variables (121 variables).

–  H0: A variable between the two ensembles 
belong to the same distribution.

– Test H0  for each variable using a KS test.

– Test statistic (t): No. of variables that reject 
H0 at a given confidence level (say 95%).

– Null distribution: Resampling
 

Schematic Illustration: KS test
– H0 rejected if t > a, where a is some critical 

number for a significance level (Type I error 
rate).

 
– a is empirically from an approximate null 

distribution of t derived using resampling 
techniques. 
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Equality of Distribution Tests
• Kernel Test (e.g. Gretton et al. 2006): 

– Maximum mean discrepancy (MMD) metric

– Small values of MMD indicates same population
– Derive null distribution by resampling

MMD =

 
1
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Â
i, j=1

k(Xi,Xj)�
2
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n,m

Â
i, j=1

k(Xi,Yj)+
1
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Â
i, j=1

k(Yi,Yj)

! 1
2

(3)

where k represents the kernel in its class of functions that maximizes MMD and X1, . . . ,Xn and705

Y1, . . . ,Ym are the multivariate vectors of the baseline and perturbed ensembles. The null distribu-706

tion of MMD has a complex form, but the permutation test approach is routinely applied to establish707

the null distribution of MMD.708

The significance level of these null hypothesis tests determines the false positive (erroneously rejecting709

a true null hypothesis, Type I error) rates. We will conduct a power analysis of these tests using a large710

controlled set of ensembles to empirically determine the optimal sample size required to detect a given711

degree of difference between two ensembles with a given false negative (erroneously accepting a false null712

hypothesis, Type II error) rate.713

Our approach is similar to the approach of Baker et al. (2015) developed by the CESM software en-714

gineering group and included in public releases since CESM version 1.4. They use one-year simulations715

in a principal component based approach to evaluate if global annual means of output variables of a mod-716

ified model simulation belong to the statistical distribution derived from a large baseline ensemble. Baker717

et al. (2015) reduce the multivariate hypothesis test to a set of uncorrelated univariate hypothesis tests. The718

pass/fail criterion of the multivariate hypothesis test is determined empirically as the number of univariate719

hypothesis tests that are allowed to fail at a particular significance level. Principal component analysis re-720

quires that the sample size be larger than the number of variables. Because a typical simulation outputs more721

than a hundred variables, establishing the climate statistics of the baseline model becomes quite expensive.722

Our approach is beneficial over the Baker et al. (2015) approach as the new multivariate tests do not require723

large sample sizes for the baseline model. Being able to use smaller ensemble sizes is particularly useful for724

ACME development, where climate-changing feature changes are frequently introduced. Also, instead of725

conducting several univariate hypothesis tests as in the Baker et al. (2015) approach, we only test one null726

hypothesis (equality of two multivariate sample distributions) with the multivariate tests which are based on727

robust and satisfying theoretical foundations.728

Another issue with the Baker et al. (2015) approach is that in the current form it only works on globally,729

annually-averaged quantities. This prevents identification of differences which show up at smaller spatial730

and temporal scales or in the treatment of climate extremes. We plan to implement our tests not only for731

global means as illustrated above, but also for individual grid points to identify geographic locations where732

model differences occur. An issue with performing statistical tests for each grid cell is that if you apply733

a test at 95% confidence level to 100 independent cells, 5 of them will fail the test due to chance alone.734

Correcting for this is complicated by the fact that GCM grid cells are not independent of each other as735

large and important spatial correlations exist in the climate system at different temporal scales, much like736

the field significance of regression patterns. We plan to test the null hypothesis that the spatial pattern of737

climate variables is similar between the two model variants by using a permutation test. We define a spatial738

pattern test statistic, t, as the number of grid points that fail the multivariate test. We can derive the null739

distribution of t by resampling from the pooled data of n perturbed and m perturbed ensemble members. We740

will randomly resample and put them into n and m sized groups. For each such resampling, i, we will then741

compute ti, i.e. the number of grid points that fail the test, leading to the empirical null distribution. If all742

possible permutations are drawn, then the null distribution is exact for n baseline and m perturbed runs. If743

t > 100(1�a)% of the permuted values ti, for a significance level a for the grid point multivariate test, the744

null hypothesis does not hold.745

We will also test for differences in extremes. Classical non-parametric distance-based tests of equality746

of univariate distributions, e.g. Kolmogrov-Smirnov (KS) test, are not robust for distributions with different747
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where k represents the kernel in its class of functions that maximizes MMD and X1, . . . ,Xn and705

Y1, . . . ,Ym are the multivariate vectors of the baseline and perturbed ensembles. The null distribu-706

tion of MMD has a complex form, but the permutation test approach is routinely applied to establish707

the null distribution of MMD.708

The significance level of these null hypothesis tests determines the false positive (erroneously rejecting709

a true null hypothesis, Type I error) rates. We will conduct a power analysis of these tests using a large710

controlled set of ensembles to empirically determine the optimal sample size required to detect a given711

degree of difference between two ensembles with a given false negative (erroneously accepting a false null712

hypothesis, Type II error) rate.713

Our approach is similar to the approach of Baker et al. (2015) developed by the CESM software en-714

gineering group and included in public releases since CESM version 1.4. They use one-year simulations715

in a principal component based approach to evaluate if global annual means of output variables of a mod-716

ified model simulation belong to the statistical distribution derived from a large baseline ensemble. Baker717

et al. (2015) reduce the multivariate hypothesis test to a set of uncorrelated univariate hypothesis tests. The718

pass/fail criterion of the multivariate hypothesis test is determined empirically as the number of univariate719

hypothesis tests that are allowed to fail at a particular significance level. Principal component analysis re-720

quires that the sample size be larger than the number of variables. Because a typical simulation outputs more721

than a hundred variables, establishing the climate statistics of the baseline model becomes quite expensive.722

Our approach is beneficial over the Baker et al. (2015) approach as the new multivariate tests do not require723

large sample sizes for the baseline model. Being able to use smaller ensemble sizes is particularly useful for724

ACME development, where climate-changing feature changes are frequently introduced. Also, instead of725

conducting several univariate hypothesis tests as in the Baker et al. (2015) approach, we only test one null726

hypothesis (equality of two multivariate sample distributions) with the multivariate tests which are based on727

robust and satisfying theoretical foundations.728

Another issue with the Baker et al. (2015) approach is that in the current form it only works on globally,729

annually-averaged quantities. This prevents identification of differences which show up at smaller spatial730

and temporal scales or in the treatment of climate extremes. We plan to implement our tests not only for731

global means as illustrated above, but also for individual grid points to identify geographic locations where732

model differences occur. An issue with performing statistical tests for each grid cell is that if you apply733

a test at 95% confidence level to 100 independent cells, 5 of them will fail the test due to chance alone.734

Correcting for this is complicated by the fact that GCM grid cells are not independent of each other as735

large and important spatial correlations exist in the climate system at different temporal scales, much like736

the field significance of regression patterns. We plan to test the null hypothesis that the spatial pattern of737

climate variables is similar between the two model variants by using a permutation test. We define a spatial738

pattern test statistic, t, as the number of grid points that fail the multivariate test. We can derive the null739

distribution of t by resampling from the pooled data of n perturbed and m perturbed ensemble members. We740

will randomly resample and put them into n and m sized groups. For each such resampling, i, we will then741

compute ti, i.e. the number of grid points that fail the test, leading to the empirical null distribution. If all742

possible permutations are drawn, then the null distribution is exact for n baseline and m perturbed runs. If743

t > 100(1�a)% of the permuted values ti, for a significance level a for the grid point multivariate test, the744

null hypothesis does not hold.745

We will also test for differences in extremes. Classical non-parametric distance-based tests of equality746

of univariate distributions, e.g. Kolmogrov-Smirnov (KS) test, are not robust for distributions with different747

15
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Cucconi Test

Cucconi test
In statistics, the Cucconi test is a nonparametric test for jointly comparing central tendency and
variability (detecting location and scale changes) in two samples. Many rank tests have been
proposed for the two-sample location-scale problem. Nearly all of them are Lepage-type tests, that
is a combination of a location test and a scale test. The Cucconi test was first proposed by
Cucconi.[1]

The Cucconi test is not as familiar as other location-scale tests but it is of interest for several
reasons. First, from a historical point of view, it was proposed some years before the Lepage test,
the standard rank test for the two-sample location-scale problem. Secondly, as opposed to other
location-scale tests, the Cucconi test is not a combination of location and scale tests. Thirdly, it
compares favorably with Lepage type tests in terms of power and type-one error probability[2] and
very importantly it is easier to be computed because it requires only the ranks of one sample in the
combined sample, whereas the other tests also require scores of various types as well as to
permutationally estimate mean and variance of test statistics because their analytic formulae are
not available.[3]

The Cucconi test is based on the following statistic:

where  is based on the standardized sum of squared ranks of the first sample elements in the
pooled sample, and  is based on the standardized sum of squared contrary-ranks of the first
sample elements in the pooled sample.  is the correlation coefficient between  and . The test
statistic rejects for large values, a table of critical values is available.[4] The p-value can be easily
computed via permutations.

The interest on this test has recently increased spanning applications in many different fields like
hydrology, applied psychology and industrial quality control.[5]

Lepage test

See also

• Test Statistic:

• Larger test-statistic indicates that Ensemble A and B come from different populations.

• Popular in other fields like hydrology, quality control, etc. (e.g. Mukherjee and Marozzi 
et al. 2014)

U: based on squared sum of ranks of 
samples in Ensemble A in the two sample 
pool of Ensembles A and B

V: based on squared sum of contrary-ranks 
of samples in Ensemble A in the pool.

r: Correlation coefficient between U and V 
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Reproducibility Tests (EAM) on Master

• Nightly tests run on Chrysalis (E3SM machine)
– Time step convergence test

– Perturbation growth test

– KS testing framework

• On CDASH under E3SM_Customs_Tests
– https://my.cdash.org/index.php?project=E3SM

– All runs archived:
– Large ne4 1yr F1850C5 ensemble available

https://my.cdash.org/index.php?project=E3SM

