EarthCube Bibliography#

Full bibliography for this analysis built from source data which was imported into Zotero with a notebook and exported as HTML from Zotero.

Downloads

This data can be downloaded as Word docx, PDF or bibtex

Abduallah, Y., J. T. L. Wang, Y. Nie, C. Liu, and H. Wang, 2021: DeepSun: machine-learning-as-a-service for solar flare prediction. Res. Astron. Astrophys., 21, 160, https://doi.org/10.1088/1674-4527/21/7/160.
——, V. K. Jordanova, H. Liu, Q. Li, J. T. L. Wang, and H. Wang, 2022: Predicting Solar Energetic Particles Using SDO/HMI Vector Magnetic Data Products and a Bidirectional LSTM Network. ApJS, 260, 16, https://doi.org/10.3847/1538-4365/ac5f56.
Aberger, C. R., A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré, 2017: EmptyHeaded. ACM Trans. Database Syst., 42, 1–44, https://doi.org/10.1145/3129246.
Abernathey, R. P., and Coauthors, 2021: Cloud-Native Repositories for Big Scientific Data. Comput. Sci. Eng., 23, 26–35, https://doi.org/10.1109/mcse.2021.3059437.
Al-Saadi, A., I. Paraskevakos, B. C. Gonçalves, H. J. Lynch, S. Jha, and M. Turilli, 2021: Comparing workflow application designs for high resolution satellite image analysis. Future Generation Computer Systems, 124, 315–329, https://doi.org/10.1016/j.future.2021.04.023.
Balasubramanian, V., and Coauthors, 2018: Harnessing the Power of Many: Extensible Toolkit for Scalable Ensemble Applications. Harnessing the Power of Many: Extensible Toolkit for Scalable Ensemble Applications, https://doi.org/10.1109/ipdps.2018.00063.
Bhatt, A., T. Valentic, A. Reimer, L. Lamarche, P. Reyes, and R. Cosgrove, 2020: Reproducible Software Environment: a tool enabling computational reproducibility in geospace sciences and facilitating collaboration. J. Space Weather Space Clim., 10, 12, https://doi.org/10.1051/swsc/2020011.
Blumberg, K. L., A. J. Ponsero, M. Bomhoff, E. M. Wood-Charlson, E. F. DeLong, and B. L. Hurwitz, 2021: Ontology-Enriched Specifications Enabling Findable, Accessible, Interoperable, and Reusable Marine Metagenomic Datasets in Cyberinfrastructure Systems. Front. Microbiol., 12, https://doi.org/10.3389/fmicb.2021.765268.
Bolton, D. C., P. Shokouhi, B. Rouet‐Leduc, C. Hulbert, J. Rivière, C. Marone, and P. A. Johnson, 2019: Characterizing Acoustic Signals and Searching for Precursors during the Laboratory Seismic Cycle Using Unsupervised Machine Learning. Characterizing Acoustic Signals and Searching for Precursors during the Laboratory Seismic Cycle Using Unsupervised Machine Learning, 90, 1088–1098, https://doi.org/10.1785/0220180367.
——, S. Shreedharan, J. Rivière, and C. Marone, 2020: Acoustic Energy Release During the Laboratory Seismic Cycle: Insights on Laboratory Earthquake Precursors and Prediction. JGR Solid Earth, 125, https://doi.org/10.1029/2019jb018975.
Bolukbasi, B., and Coauthors, 2013: Open Data: Crediting a Culture of Cooperation. Science, 342, 1041–4042, https://doi.org/10.1126/science.342.6162.1041-b.
Brewer, T. E., and Coauthors, 2019: Ecological and Genomic Attributes of Novel Bacterial Taxa That Thrive in Subsurface Soil Horizons. mBio, 10, https://doi.org/10.1128/mbio.01318-19.
van den Brink, L., and Coauthors, 2018: Best practices for publishing, retrieving, and using spatial data on the web. SW, 10, 95–114, https://doi.org/10.3233/sw-180305.
Bromwich, D. H., and Coauthors, 2018: The Arctic System Reanalysis, Version 2. The Arctic System Reanalysis, Version 2, 99, 805–828, https://doi.org/10.1175/bams-d-16-0215.1.
Calyam, P., and Coauthors, 2020: Measuring success for a future vision: Defining impact in science gateways/virtual research environments. Concurrency Computat Pract Exper, 33, https://doi.org/10.1002/cpe.6099.
Cantrall, C., and T. Matsuo, 2021: Deriving column-integrated thermospheric temperature  with the N<sub>2</sub> Lyman–Birge–Hopfield (2,0) band. Atmos. Meas. Tech., 14, 6917–6928, https://doi.org/10.5194/amt-14-6917-2021.
Cash, B. A., and N. J. Burls, 2019: Predictable and Unpredictable Aspects of U.S. West Coast Rainfall and El Niño: Understanding the 2015/16 Event. Predictable and Unpredictable Aspects of U.S. West Coast Rainfall and El Niño: Understanding the 2015/16 Event, 32, 2843–2868, https://doi.org/10.1175/jcli-d-18-0181.1.
Cervone, G., L. Clemente-Harding, S. Alessandrini, and L. Delle Monache, 2017: Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble. Renewable Energy, 108, 274–286, https://doi.org/10.1016/j.renene.2017.02.052.
Chan, M. A., S. E. Peters, and B. Tikoff, 2016: The Future of Field Geology, Open Data Sharing and CyberTechnology in Earth Science. TSR, 14, 4–10, https://doi.org/10.2110/sedred.2016.1.4.
Chen, B., and Coauthors, 2020: Measurement of magnetic field and relativistic electrons along a solar flare current sheet. Nat Astron, 4, 1140–1147, https://doi.org/10.1038/s41550-020-1147-7.
Choi, I., A. J. Ponsero, M. Bomhoff, K. Youens-Clark, J. H. Hartman, and B. L. Hurwitz, 2018: Libra: scalablek-mer–based tool for massive all-vs-all metagenome comparisons. Libra: scalablek-mer–based tool for massive all-vs-all metagenome comparisons, 8, https://doi.org/10.1093/gigascience/giy165.
Choi, Y.-D., and Coauthors, 2021: Toward open and reproducible environmental modeling by integrating online data repositories, computational environments, and model Application Programming Interfaces. Environmental Modelling & Software, 135, 104888, https://doi.org/10.1016/j.envsoft.2020.104888.
Cholia, S., and Coauthors, 2020: Towards Interactive, Reproducible Analytics at Scale on HPC Systems. Towards Interactive, Reproducible Analytics at Scale on HPC Systems, https://doi.org/10.1109/urgenthpc51945.2020.00011.
Chuah, J., M. Deeds, T. Malik, Y. Choi, and J. L. Goodall, 2020: Documenting Computing Environments for Reproducible Experiments. Documenting Computing Environments for Reproducible Experiments, https://doi.org/10.3233/apc200106.
Cox, S., J. Klump, and K. Lehnert, 2018: Connecting Scientific Data and Real-World Samples. Eos, 99, https://doi.org/10.1029/2018eo090337.
Crawford, O., D. Al-Attar, J. Tromp, J. X. Mitrovica, J. Austermann, and H. C. P. Lau, 2018: Quantifying the sensitivity of post-glacial sea level change to laterally varying viscosity. Quantifying the sensitivity of post-glacial sea level change to laterally varying viscosity, 214, 1324–1363, https://doi.org/10.1093/gji/ggy184.
David, C. H., Y. Gil, C. J. Duffy, S. D. Peckham, and S. K. Venayagamoorthy, 2016: An introduction to the special issue on Geoscience Papers of the Future. Earth and Space Science, 3, 441–444, https://doi.org/10.1002/2016ea000201.
Deng, J., W. Song, D. Liu, Q. Li, G. Lin, and H. Wang, 2021: Improving the Spatial Resolution of Solar Images Using Generative Adversarial Network and Self-attention Mechanism*. ApJ, 923, 76, https://doi.org/10.3847/1538-4357/ac2aa2.
Dere, A., 2019: iSamples Sample Management Training Module for Soil Cores. iSamples Sample Management Training Module for Soil Cores, https://doi.org/10.1594/IEDA/100709.
Di, L., Z. Sun, E. Yu, J. Song, D. Tong, H. Huang, X. Wu, and B. Domenico, 2016: Coupling of Earth science models and earth observations through OGC interoperability specifications. Coupling of Earth science models and earth observations through OGC interoperability specifications, https://doi.org/10.1109/igarss.2016.7729933.
Doan, K., A. O. Oloso, K.-S. Kuo, T. L. Clune, H. Yu, B. Nelson, and J. Zhang, 2016: Evaluating the impact of data placement to spark and SciDB with an Earth Science use case. Evaluating the impact of data placement to spark and SciDB with an Earth Science use case, https://doi.org/10.1109/bigdata.2016.7840621.
Dove, N. C., and Coauthors, 2020: Continental-scale patterns of extracellular enzyme activity in the subsoil: an overlooked reservoir of microbial activity. Environ. Res. Lett., 15, 1040a1, https://doi.org/10.1088/1748-9326/abb0b3.
Duncan, C. J., M. A. Chan, E. Hajek, D. Kamola, N. M. Roberts, B. Tikoff, and J. D. Walker, 2021: Bringing sedimentology and stratigraphy into the StraboSpot data management system. Bringing sedimentology and stratigraphy into the StraboSpot data management system, 17, 1914–1927, https://doi.org/10.1130/ges02364.1.
Dye, M., D. S. Stamps, M. Mason, and E. Saria, 2022: Toward Autonomous Detection of Anomalous GNSS Data Via Applied Unsupervised Artificial Intelligence. Int. J. Semantic Computing, 16, 29–45, https://doi.org/10.1142/s1793351x22400025.
Elag, M. M., P. Kumar, L. Marini, J. D. Myers, M. Hedstrom, and B. A. Plale, 2017: Identification and characterization of information-networks in long-tail data collections. Environmental Modelling & Software, 94, 100–111, https://doi.org/10.1016/j.envsoft.2017.03.032.
Emile-Geay, J., D. Khider, N. McKay, Y. Gil, D. Garijo, and V. Ratnakar, 2018: LinkedEarth: supporting paleoclimate data standards and crowd curation. PAGES Mag, 26, 62–63, https://doi.org/10.22498/pages.26.2.62.
Essawy, B. T., J. L. Goodall, H. Xu, and Y. Gil, 2017: Evaluation of the OntoSoft Ontology for describing metadata for legacy hydrologic modeling software. Environmental Modelling & Software, 92, 317–329, https://doi.org/10.1016/j.envsoft.2017.01.024.
——, ——, W. Zell, D. Voce, M. M. Morsy, J. Sadler, Z. Yuan, and T. Malik, 2018: Integrating scientific cyberinfrastructures to improve reproducibility in computational hydrology: Example for HydroShare and GeoTrust. Environmental Modelling & Software, 105, 217–229, https://doi.org/10.1016/j.envsoft.2018.03.025.
——, ——, D. Voce, M. M. Morsy, J. M. Sadler, Y. D. Choi, D. G. Tarboton, and T. Malik, 2020: A taxonomy for reproducible and replicable research in environmental modelling. Environmental Modelling & Software, 134, 104753, https://doi.org/10.1016/j.envsoft.2020.104753.
Fan, Y., and Coauthors, 2014: DigitalCrust - a 4D data system of material properties for transforming research on crustal fluid flow. Geofluids, 15, 372–379, https://doi.org/10.1111/gfl.12114.
Farley, S. S., A. Dawson, S. J. Goring, and J. W. Williams, 2018: Situating Ecology as a Big-Data Science: Current Advances, Challenges, and Solutions. Situating Ecology as a Big-Data Science: Current Advances, Challenges, and Solutions, 68, 563–576, https://doi.org/10.1093/biosci/biy068.
Ferdowsi, B., J. D. Gartner, K. N. Johnson, A. Kasprak, K. L. Miller, W. Nardin, A. C. Ortiz, and A. Tejedor, 2021: Earthcasting: Geomorphic Forecasts for Society. Earth’s Future, 9, https://doi.org/10.1029/2021ef002088.
Fleishman, G. D., G. M. Nita, N. Kuroda, S. Jia, K. Tong, R. R. Wen, and Z. Zhizhuo, 2018: Revealing the Evolution of Non-thermal Electrons in Solar Flares Using 3D Modeling. ApJ, 859, 17, https://doi.org/10.3847/1538-4357/aabae9.
——, S. A. Anfinogentov, A. G. Stupishin, A. A. Kuznetsov, and G. M. Nita, 2021a: Coronal Heating Law Constrained by Microwave Gyroresonant Emission. ApJ, 909, 89, https://doi.org/10.3847/1538-4357/abdab1.
——, L. Kleint, G. G. Motorina, G. M. Nita, and E. P. Kontar, 2021b: Energy Budget of Plasma Motions, Heating, and Electron Acceleration in a Three-loop Solar Flare. ApJ, 913, 97, https://doi.org/10.3847/1538-4357/abf495.
Fredericks, J., and M. Botts, 2018: Promoting the capture of sensor data provenance: a role-based approach to enable data quality assessment, sensor management and interoperability. Open geospatial data, softw. stand., 3, https://doi.org/10.1186/s40965-018-0048-5.
Fuka, D. R., A. S. Collick, P. J. A. Kleinman, D. A. Auerbach, R. D. Harmel, and Z. M. Easton, 2016: Improving the spatial representation of soil properties and hydrology using topographically derived initialization processes in the SWAT model. Hydrol. Process., 30, 4633–4643, https://doi.org/10.1002/hyp.10899.
Gaigalas, ?, ? Di, and ? Sun, 2019: Advanced Cyberinfrastructure to Enable Search of Big Climate Datasets in THREDDS. IJGI, 8, 494, https://doi.org/10.3390/ijgi8110494.
Garijo, D., and Coauthors, 2014a: Workflow Reuse in Practice: A Study of Neuroimaging Pipeline Users. Workflow Reuse in Practice: A Study of Neuroimaging Pipeline Users, https://doi.org/10.1109/escience.2014.33.
——, O. Corcho, Y. Gil, B. A. Gutman, I. D. Dinov, P. Thompson, and A. W. Toga, 2014b: FragFlow Automated Fragment Detection in Scientific Workflows. FragFlow Automated Fragment Detection in Scientific Workflows, https://doi.org/10.1109/escience.2014.32.
——, Y. Gil, and O. Corcho, 2017: Abstract, link, publish, exploit: An end to end framework for workflow sharing. Future Generation Computer Systems, 75, 271–283, https://doi.org/10.1016/j.future.2017.01.008.
——, M. Osorio, D. Khider, V. Ratnakar, and Y. Gil, 2019: OKG-Soft: An Open Knowledge Graph with Machine Readable Scientific Software Metadata. OKG-Soft: An Open Knowledge Graph with Machine Readable Scientific Software Metadata, https://doi.org/10.1109/escience.2019.00046.
Gil, Y., and V. Ratnakar, 2016: Dynamically Generated Metadata and Replanning by Interleaving Workflow Generation and Execution. Dynamically Generated Metadata and Replanning by Interleaving Workflow Generation and Execution, https://doi.org/10.1109/icsc.2016.89.
——, and D. Garijo, 2017: Towards Automating Data Narratives. Towards Automating Data Narratives, https://doi.org/10.1145/3025171.3025193.
——, V. Ratnakar, and D. Garijo, 2015: OntoSoft. OntoSoft, https://doi.org/10.1145/2815833.2816955.
——, and Coauthors, 2016a: Toward the Geoscience Paper of the Future: Best practices for documenting and sharing research from data to software to provenance. Earth and Space Science, 3, 388–415, https://doi.org/10.1002/2015ea000136.
——, D. Garijo, S. Mishra, and V. Ratnakar, 2016b: OntoSoft: A distributed semantic registry for scientific software. OntoSoft: A distributed semantic registry for scientific software, https://doi.org/10.1109/escience.2016.7870916.
——, ——, V. Ratnakar, D. Khider, J. Emile-Geay, and N. McKay, 2017: A Controlled Crowdsourcing Approach for Practical Ontology Extensions and Metadata Annotations. A Controlled Crowdsourcing Approach for Practical Ontology Extensions and Metadata Annotations, 231–246, https://doi.org/10.1007/978-3-319-68204-4_24.
——, and Coauthors, 2018: Intelligent systems for geosciences. Commun. ACM, 62, 76–84, https://doi.org/10.1145/3192335.
Glazner, A., and J. D. Walker, 2020: StraboTools: A Mobile App for Quantifying Fabric in Geology. GSAT, https://doi.org/10.1130/gsatg454a.1.
Goble, C., S. Cohen-Boulakia, S. Soiland-Reyes, D. Garijo, Y. Gil, M. R. Crusoe, K. Peters, and D. Schober, 2020: FAIR Computational Workflows. Data Intellegence, 2, 108–121, https://doi.org/10.1162/dint_a_00033.
Gonçalves, B. C., and H. J. Lynch, 2021: Fine-Scale Sea Ice Segmentation for High-Resolution Satellite Imagery with Weakly-Supervised CNNs. Remote Sensing, 13, 3562, https://doi.org/10.3390/rs13183562.
Gonçalves, B. C., B. Spitzbart, and H. J. Lynch, 2020: SealNet: A fully-automated pack-ice seal detection pipeline for sub-meter satellite imagery. Remote Sensing of Environment, 239, 111617, https://doi.org/10.1016/j.rse.2019.111617.
Granger, B. E., and F. Perez, 2021: Jupyter: Thinking and Storytelling With Code and Data. Comput. Sci. Eng., 23, 7–14, https://doi.org/10.1109/mcse.2021.3059263.
Griffin, J. S., and Coauthors, 2017: Microbial diversity in an intensively managed landscape is structured by landscape connectivity. Microbial diversity in an intensively managed landscape is structured by landscape connectivity, 93, https://doi.org/10.1093/femsec/fix120.
Grimm, E. C., J. Blois, T. Giesecke, R. Graham, A. Smith, and J. Williams, 2018: Constituent databases and data stewards in the Neotoma Paleoecology Database: History, growth, and new directions. PAGES Mag, 26, 64–65, https://doi.org/10.22498/pages.26.2.64.
Gui, Z., and Coauthors, 2016: Developing Subdomain Allocation Algorithms Based on Spatial and Communicational Constraints to Accelerate Dust Storm Simulation. PLoS ONE, 11, e0152250, https://doi.org/10.1371/journal.pone.0152250.
Gundersen, O. E., Y. Gil, and D. W. Aha, 2018: On Reproducible AI: Towards Reproducible Research, Open Science, and Digital Scholarship in AI Publications. AIMag, 39, 56–68, https://doi.org/10.1609/aimag.v39i3.2816.
Hallett, B., 2019: iSamples Sample Management Training Module for Rock Outcrop Samples. iSamples Sample Management Training Module for Rock Outcrop Samples, https://doi.org/10.1594/IEDA/100691.
He, Y., Y. Zhou, T. Wen, S. Zhang, F. Huang, X. Zou, X. Ma, and Y. Zhu, 2022: A review of machine learning in geochemistry and cosmochemistry: Method improvements and applications. Applied Geochemistry, 140, 105273, https://doi.org/10.1016/j.apgeochem.2022.105273.
Held, N., J. Saunders, J. Futrelle, and M. Saito, 2018: Harnessing the Power of Scientific Python to Investigate Biogeochemistry and Metaproteomes of the Central Pacific Ocean. Harnessing the Power of Scientific Python to Investigate Biogeochemistry and Metaproteomes of the Central Pacific Ocean, https://doi.org/10.25080/majora-4af1f417-010.
Held, N. A., and Coauthors, 2020: Co-occurrence of Fe and P stress in natural populations of the marine diazotroph <i>Trichodesmium</i> Biogeosciences, 17, 2537–2551, https://doi.org/10.5194/bg-17-2537-2020.
Hoffman, L., M. R. Mazloff, S. T. Gille, D. Giglio, and A. Varadarajan, 2022: Ocean Surface Salinity Response to Atmospheric River Precipitation in the California Current System. Ocean Surface Salinity Response to Atmospheric River Precipitation in the California Current System, 52, 1867–1885, https://doi.org/10.1175/jpo-d-21-0272.1.
Hogan, A., P. Hitzler, and K. Janowicz, 2016: Linked Dataset description papers at the Semantic Web journal: A critical assessment. SW, 7, 105–116, https://doi.org/10.3233/sw-160216.
Hsu, C. ‐T., T. Matsuo, A. Maute, R. Stoneback, and C. ‐P. Lien, 2021: Data‐Driven Ensemble Modeling of Equatorial Ionospheric Electrodynamics: A Case Study During a Minor Storm Period Under Solar Minimum Conditions. JGR Space Physics, 126, https://doi.org/10.1029/2020ja028539.
Hsu, L., B. McElroy, R. L. Martin, and W. Kim, 2013: Building a Sediment Experimentalist Network (SEN): sharing best practices for experimental methods and data management. TSR, 11, 9–12, https://doi.org/10.2110/sedred.2013.4.9.
——, R. L. Martin, B. McElroy, K. Litwin-Miller, and W. Kim, 2015: Data management, sharing, and reuse in experimental geomorphology: Challenges, strategies, and scientific opportunities. Geomorphology, 244, 180–189, https://doi.org/10.1016/j.geomorph.2015.03.039.
Hu, W., and G. Cervone, 2019: Dynamically Optimized Unstructured Grid (DOUG) for Analog Ensemble of numerical weather predictions using evolutionary algorithms. Computers & Geosciences, 133, 104299, https://doi.org/10.1016/j.cageo.2019.07.003.
——, D. Del Vento, and S. Su, 2017: Proceedings of the 2020 Improving Scientific Software Conference. Proceedings of the 2020 Improving Scientific Software Conference, https://doi.org/10.5065/P2JJ-9878.
——, G. Cervone, A. Merzky, M. Turilli, and S. Jha, 2022: A new hourly dataset for photovoltaic energy production for the continental USA. Data in Brief, 40, 107824, https://doi.org/10.1016/j.dib.2022.107824.
Hulbert, C., B. Rouet-Leduc, P. A. Johnson, C. X. Ren, J. Rivière, D. C. Bolton, and C. Marone, 2018: Similarity of fast and slow earthquakes illuminated by machine learning. Nature Geosci, 12, 69–74, https://doi.org/10.1038/s41561-018-0272-8.
Husson, J. M., and S. E. Peters, 2017: Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir. Earth and Planetary Science Letters, 460, 68–75, https://doi.org/10.1016/j.epsl.2016.12.012.
Illarionov, E., A. Kosovichev, and A. Tlatov, 2020: Machine-learning Approach to Identification of Coronal Holes in Solar Disk Images and Synoptic Maps. ApJ, 903, 115, https://doi.org/10.3847/1538-4357/abb94d.
Janowicz, K., and Coauthors, 2016: Moon Landing or Safari? A Study of Systematic Errors and Their Causes in Geographic Linked Data. Moon Landing or Safari? A Study of Systematic Errors and Their Causes in Geographic Linked Data, 275–290, https://doi.org/10.1007/978-3-319-45738-3_18.
Jenkins, C., 2018: Sediment Accumulation Rates For the Mississippi Delta Region: a Time-interval Synthesis. Sediment Accumulation Rates For the Mississippi Delta Region: a Time-interval Synthesis, 88, 301–309, https://doi.org/10.2110/jsr.2018.15.
Jia, X., and Coauthors, 2021: Physics-Guided Machine Learning from Simulation Data: An Application in Modeling Lake and River Systems. Physics-Guided Machine Learning from Simulation Data: An Application in Modeling Lake and River Systems, https://doi.org/10.1109/icdm51629.2021.00037.
Jiang, H., J. Wang, C. Liu, J. Jing, H. Liu, J. T. L. Wang, and H. Wang, 2020: Identifying and Tracking Solar Magnetic Flux Elements with Deep Learning. ApJS, 250, 5, https://doi.org/10.3847/1538-4365/aba4aa.
Jiang, P., M. Elag, P. Kumar, S. D. Peckham, L. Marini, and L. Rui, 2017: A service-oriented architecture for coupling web service models using the Basic Model Interface (BMI). Environmental Modelling & Software, 92, 107–118, https://doi.org/10.1016/j.envsoft.2017.01.021.
Jiang, Y., and Coauthors, 2018: A Smart Web-Based Geospatial Data Discovery System with Oceanographic Data as an Example. IJGI, 7, 62, https://doi.org/10.3390/ijgi7020062.
Kadlec, J., B. StClair, D. P. Ames, and R. A. Gill, 2015: WaterML R package for managing ecological experiment data on a CUAHSI HydroServer. Ecological Informatics, 28, 19–28, https://doi.org/10.1016/j.ecoinf.2015.05.002.
——, A. W. Miller, and D. P. Ames, 2016: Extracting Snow Cover Time Series Data from Open Access Web Mapping Tile Services. J Am Water Resour Assoc, 52, 916–932, https://doi.org/10.1111/1752-1688.12387.
Karnauskas, K. B., and D. Giglio, 2022: Argo Reveals the Scales and Provenance of Equatorial Island Upwelling Systems. Geophysical Research Letters, 49, https://doi.org/10.1029/2022gl098744.
Kelbert, A., 2014: Science and Cyberinfrastructure: The Chicken and Egg Problem. Eos Trans. AGU, 95, 458–459, https://doi.org/10.1002/2014eo490006.
Kenigsberg, A. R., J. Rivière, C. Marone, and D. M. Saffer, 2020: Evolution of Elastic and Mechanical Properties During Fault Shear: The Roles of Clay Content, Fabric Development, and Porosity. J. Geophys. Res. Solid Earth, 125, https://doi.org/10.1029/2019jb018612.
Kerkez, B., and Coauthors, 2016: Cloud Hosted Real‐time Data Services for the Geosciences (CHORDS). Geosci. Data J., 3, 4–8, https://doi.org/10.1002/gdj3.36.
Khalsa, S. J. S., C. A. Mattmann, and R. Duerr, 2017: Deep web crawling for insights from polar data. Deep web crawling for insights from polar data, https://doi.org/10.1109/igarss.2017.8126974.
Khider, D., and Coauthors, 2019: PaCTS 1.0: A Crowdsourced Reporting Standard for Paleoclimate Data. Paleoceanography and Paleoclimatology, 34, 1570–1596, https://doi.org/10.1029/2019pa003632.
Kosovichev, A., 2021: Intelligent Databases and Machine-Learning Analysis Tools for Heliophysics. Intelligent Databases and Machine-Learning Analysis Tools for Heliophysics, https://doi.org/10.6084/M9.FIGSHARE.14848713.V1.
Krisnadhi, A., and Coauthors, 2015: The GeoLink Modular Oceanography Ontology. The GeoLink Modular Oceanography Ontology, 301–309, https://doi.org/10.1007/978-3-319-25010-6_19.
Kumar, P., 2015: Hydrocomplexity: Addressing water security and emergent environmental risks. Water Resour. Res., 51, 5827–5838, https://doi.org/10.1002/2015wr017342.
Kuo, K.-S., A. Oloso, K. Doan, T. L. Clune, and H. Yu, 2016: Implications of data placement strategy to Big Data technologies based on shared-nothing architecture for geosciences. Implications of data placement strategy to Big Data technologies based on shared-nothing architecture for geosciences, https://doi.org/10.1109/igarss.2016.7730983.
——, Y. Pan, F. Zhu, J. Wang, M. L. Rilee, and H. Yu, 2018: A Big Earth Data Platform Exploiting Transparent Multimodal Parallelization. A Big Earth Data Platform Exploiting Transparent Multimodal Parallelization, https://doi.org/10.1109/igarss.2018.8518304.
——, H. Yu, Y. Pan, and M. L. Rilee, 2019: Leveraging STARE for Co-aligned Data Locality with netCDF and Python MPI. Leveraging STARE for Co-aligned Data Locality with netCDF and Python MPI, https://doi.org/10.1109/igarss.2019.8900423.
Kuroda, N., G. D. Fleishman, D. E. Gary, G. M. Nita, B. Chen, and S. Yu, 2020: Evolution of Flare-Accelerated Electrons Quantified by Spatially Resolved Analysis. Front. Astron. Space Sci., 7, https://doi.org/10.3389/fspas.2020.00022.
Le, H., D. Samaras, and H. J. Lynch, 2021: A convolutional neural network architecture designed for the automated survey of seabird colonies. Remote Sens Ecol Conserv, 8, 251–262, https://doi.org/10.1002/rse2.240.
Lehnert, K., J. Klump, L. Wyborn, and S. Ramdeen, 2019: Persistent, Global, Unique: The three key requirements for a trusted identifier system for physical samples. BISS, 3, https://doi.org/10.3897/biss.3.37334.
Leonard, L., K. Madduri, and C. J. Duffy, 2016: Tuning Heterogeneous Computing Platforms for Large-Scale Hydrology Data Management. IEEE Trans. Parallel Distrib. Syst., 27, 2753–2765, https://doi.org/10.1109/tpds.2015.2499741.
Lepore, C., R. Abernathey, N. Henderson, J. T. Allen, and M. K. Tippett, 2021: Future Global Convective Environments in CMIP6 Models. Earth’s Future, 9, https://doi.org/10.1029/2021ef002277.
Li, J., T. Matsuo, and L. M. Kilcommons, 2022: Assimilative Mapping of Auroral Electron Energy Flux Using SSUSI Lyman‐Birge‐Hopfield (LBH) Emissions. JGR Space Physics, 127, https://doi.org/10.1029/2021ja029739.
Li, Z., C. Yang, K. Liu, F. Hu, and B. Jin, 2016: Automatic Scaling Hadoop in the Cloud for Efficient Process of Big Geospatial Data. IJGI, 5, 173, https://doi.org/10.3390/ijgi5100173.
Liu, H., C. Liu, J. T. L. Wang, and H. Wang, 2020a: Predicting Coronal Mass Ejections Using SDO/HMI Vector Magnetic Data Products and Recurrent Neural Networks. ApJ, 890, 12, https://doi.org/10.3847/1538-4357/ab6850.
——, Y. Xu, J. Wang, J. Jing, C. Liu, J. T. L. Wang, and H. Wang, 2020b: Inferring Vector Magnetic Fields from Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network. ApJ, 894, 70, https://doi.org/10.3847/1538-4357/ab8818.
Liu, N., J. Jing, Y. Xu, and H. Wang, 2022: Multi-instrument Comparative Study of Temperature, Number Density, and Emission Measure during the Precursor Phase of a Solar Flare. ApJ, 930, 154, https://doi.org/10.3847/1538-4357/ac6425.
Lopez, L. A., R. Duerr, and S. J. S. Khalsa, 2015: Optimizing apache nutch for domain specific crawling at large scale. Optimizing apache nutch for domain specific crawling at large scale, https://doi.org/10.1109/bigdata.2015.7363976.
M. C. Carvalho, L. A., D. Garijo, C. Bauzer Medeiros, and Y. Gil, 2018: Semantic Software Metadata for Workflow Exploration and Evolution. Semantic Software Metadata for Workflow Exploration and Evolution, https://doi.org/10.1109/escience.2018.00132.
Ma, X., 2022: Knowledge graph construction and application in geosciences: A review. Computers & Geosciences, 161, 105082, https://doi.org/10.1016/j.cageo.2022.105082.
Mahabal, A. A., D. Crichton, S. G. Djorgovski, E. Law, and J. S. Hughes, 2016: From Sky to Earth: Data Science Methodology Transfer. Proc. IAU, 12, 17–26, https://doi.org/10.1017/s1743921317000060.
Maidment, D. R., 2016a: Open Water Data in Space and Time. J Am Water Resour Assoc, 52, 816–824, https://doi.org/10.1111/1752-1688.12436.
——, 2016b: Conceptual Framework for the National Flood Interoperability Experiment. J Am Water Resour Assoc, 53, 245–257, https://doi.org/10.1111/1752-1688.12474.
Malik, T., 2020: Artifact Description/Artifact Evaluation. Artifact Description/Artifact Evaluation, https://doi.org/10.1145/3456287.3465479.
Manne, N. N., S. Satpati, T. Malik, A. Bagchi, A. Gehani, and A. Chaudhary, 2022: CHEX. Proc. VLDB Endow., 15, 1297–1310, https://doi.org/10.14778/3514061.3514075.
Marsicek, J., S. Goring, S. Marcott, S. Meyers, S. Peters, I. Ross, B. Singer, and J. Williams, 2018: Automated extraction of spatiotemporal geoscientific data from the literature using GeoDeepDive. PAGES Mag, 26, 70–70, https://doi.org/10.22498/pages.26.2.70.
Matheny, A. M., P. Marchetto, J. Powell, A. Rechner, J. Chuah, E. McCormick, and S. A. Pierce, 2019: LEAF: Logger for ecological and atmospheric factors. HardwareX, 6, e00079, https://doi.org/10.1016/j.ohx.2019.e00079.
Matsuo, T., 2019: Recent Progress on Inverse and Data Assimilation Procedure for High-Latitude Ionospheric Electrodynamics. Recent Progress on Inverse and Data Assimilation Procedure for High-Latitude Ionospheric Electrodynamics, 219–232, https://doi.org/10.1007/978-3-030-26732-2_10.
Mayernik, M. S., 2018: Scholarly resource linking: Building out a “relationship life cycle.” Proc. Assoc. Info. Sci. Tech., 55, 337–346, https://doi.org/10.1002/pra2.2018.14505501037.
——, 2021: Credibility via Coupling. Engaging STS, 7, 10–32, https://doi.org/10.17351/ests2021.769.
——, and Coauthors, 2016: Building Geoscience Semantic Web Applications Using Established Ontologies. Building Geoscience Semantic Web Applications Using Established Ontologies, 15, https://doi.org/10.5334/dsj-2016-011.
McGranaghan, R. M., A. Bhatt, T. Matsuo, A. J. Mannucci, J. L. Semeter, and S. Datta‐Barua, 2017: Ushering in a New Frontier in Geospace Through Data Science. JGR Space Physics, 122, https://doi.org/10.1002/2017ja024835.
McNutt, M., K. Lehnert, B. Hanson, B. A. Nosek, A. M. Ellison, and J. L. King, 2016: Liberating field science samples and data. Science, 351, 1024–1026, https://doi.org/10.1126/science.aad7048.
Miller, K. L., W. Kim, and B. McElroy, 2019: Laboratory Investigation on Effects of Flood Intermittency on Fan Delta Dynamics. J. Geophys. Res. Earth Surf., 124, 383–399, https://doi.org/10.1029/2017jf004576.
Modrak, R. T., D. Borisov, M. Lefebvre, and J. Tromp, 2018: SeisFlows—Flexible waveform inversion software. Computers & Geosciences, 115, 88–95, https://doi.org/10.1016/j.cageo.2018.02.004.
Moges, E., B. L. Ruddell, L. Zhang, J. M. Driscoll, and L. G. Larsen, 2022: Strength and Memory of Precipitation’s Control Over Streamflow Across the Conterminous United States. Water Resources Research, 58, https://doi.org/10.1029/2021wr030186.
Mookerjee, M., D. Vieira, M. A. Chan, Y. Gil, C. Goodwin, T. F. Shipley, and B. Tikoff, 2015a: We need to talk: Facilitating communication between field-based geoscience and cyberinfrastructure communities. GSAT, 34–35, https://doi.org/10.1130/gsatg248gw.1.
——, ——, M. Chan, Y. Gil, T. Pavlis, F. Spear, and B. Tikoff, 2015b: Field Data Management: Integrating Cyberscience and Geoscience. Eos, 96, https://doi.org/10.1029/2015eo036703.
——, and Coauthors, 2023: Cyberinfrastructure for collecting and integrating geology field data: Community priorities and research agenda. Cyberinfrastructure for collecting and integrating geology field data: Community priorities and research agenda, https://doi.org/10.1130/2022.2558(01).
Moon, T., M. Fisher, H. Simonoko, and T. Stafford, 2017: QGreenland. QGreenland, https://doi.org/10.5281/ZENODO.6369184.
——, A. Ahlstrøm, H. Goelzer, W. Lipscomb, and S. Nowicki, 2018: Rising Oceans Guaranteed: Arctic Land Ice Loss and Sea Level Rise. Curr Clim Change Rep, 4, 211–222, https://doi.org/10.1007/s40641-018-0107-0.
Morlighem, M., and Coauthors, 2017: BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation. Geophysical Research Letters, 44, https://doi.org/10.1002/2017gl074954.
Mullendore, G. L., M. S. Mayernik, and D. C. Schuster, 2021: Open Science Expectations for Simulation-Based Research. Front. Clim., 3, https://doi.org/10.3389/fclim.2021.763420.
Narock, T., and Coauthors, 2014: The OceanLink project. The OceanLink project, https://doi.org/10.1109/bigdata.2014.7004347.
Nita, G. M., N. M. Viall, J. A. Klimchuk, M. A. Loukitcheva, D. E. Gary, A. A. Kuznetsov, and G. D. Fleishman, 2018: Dressing the Coronal Magnetic Extrapolations of Active Regions with a Parameterized Thermal Structure. ApJ, 853, 66, https://doi.org/10.3847/1538-4357/aaa4bf.
Njinju, E. A., and Coauthors, 2019: Lithospheric Structure of the Malawi Rift: Implications for Magma‐Poor Rifting Processes. Tectonics, 38, 3835–3853, https://doi.org/10.1029/2019tc005549.
——, D. S. Stamps, K. Neumiller, and J. Gallager, 2021: Lithospheric Control of Melt Generation Beneath the Rungwe Volcanic Province, East Africa: Implications for a Plume Source. JGR Solid Earth, 126, https://doi.org/10.1029/2020jb020728.
Oloso, A., K.-S. Kuo, T. Clune, P. Brown, A. Poliakov, and H. Yu, 2016: Implementing connected component labeling as a user defined operator for SciDB. Implementing connected component labeling as a user defined operator for SciDB, https://doi.org/10.1109/bigdata.2016.7840945.
PAGES2k Consortium, ?, 2017: A global multiproxy database for temperature reconstructions of the Common Era. Sci Data, 4, https://doi.org/10.1038/sdata.2017.88.
Peckham, S. D., A. Kelbert, M. C. Hill, and E. W. H. Hutton, 2016: Towards uncertainty quantification and parameter estimation for Earth system models in a component-based modeling framework. Computers & Geosciences, 90, 152–161, https://doi.org/10.1016/j.cageo.2016.03.005.
——, M. Stoica, E. Jafarov, A. Endalamaw, and W. R. Bolton, 2017: Reproducible, component‐based modeling with TopoFlow, a spatial hydrologic modeling toolkit. Earth and Space Science, 4, 377–394, https://doi.org/10.1002/2016ea000237.
Pennington, D., I. Ebert-Uphoff, N. Freed, J. Martin, and S. A. Pierce, 2019: Bridging sustainability science, earth science, and data science through interdisciplinary education. Sustain Sci, 15, 647–661, https://doi.org/10.1007/s11625-019-00735-3.
Peters, S., I. Ross, J. Czaplewski, A. Glassel, J. Husson, V. Syverson, A. Zaffos, and M. Livny, 2017a: A New Tool for Deep-Down Data Mining. Eos, https://doi.org/10.1029/2017eo082377.
Peters, S. E., and J. M. Husson, 2017: Sediment cycling on continental and oceanic crust. Geology, 45, 323–326, https://doi.org/10.1130/g38861.1.
——, C. Zhang, M. Livny, and C. Ré, 2014: A Machine Reading System for Assembling Synthetic Paleontological Databases. PLoS ONE, 9, e113523, https://doi.org/10.1371/journal.pone.0113523.
——, J. M. Husson, and J. Wilcots, 2017b: The rise and fall of stromatolites in shallow marine environments. Geology, 45, 487–490, https://doi.org/10.1130/g38931.1.
Peucker-Ehrenbrink, B., 2020: Land2Sea database, Version 2.0. Land2Sea database, Version 2.0, https://doi.org/10.1594/PANGAEA.892680.
——, and G. J. Fiske, 2019: A continental perspective of the seawater 87Sr/86Sr record: A review. Chemical Geology, 510, 140–165, https://doi.org/10.1016/j.chemgeo.2019.01.017.
Pham, Q., T. Malik, D. H. T. That, and A. Youngdahl, 2018: Improving Reproducibility of Distributed Computational Experiments. Improving Reproducibility of Distributed Computational Experiments, https://doi.org/10.1145/3214239.3214241.
Ponsero, A. J., and B. L. Hurwitz, 2019: The Promises and Pitfalls of Machine Learning for Detecting Viruses in Aquatic Metagenomes. Front. Microbiol., 10, https://doi.org/10.3389/fmicb.2019.00806.
Ponsero, A. J., M. Bomhoff, K. Blumberg, K. Youens-Clark, N. M. Herz, E. M. Wood-Charlson, E. F. Delong, and B. L. Hurwitz, 2020: Planet Microbe: a platform for marine microbiology to discover and analyze interconnected ‘omics and environmental data. Planet Microbe: a platform for marine microbiology to discover and analyze interconnected ‘omics and environmental data, 49, D792–D802, https://doi.org/10.1093/nar/gkaa637.
Radcliffe, D. E., and Coauthors, 2015: Applicability of Models to Predict Phosphorus Losses in Drained Fields: A Review. J. Environ. Qual., 44, 614–628, https://doi.org/10.2134/jeq2014.05.0220.
Raheem, A., H. Cavus, G. C. Coban, A. C. Kinaci, H. Wang, and J. T. L. Wang, 2021: An investigation of the causal relationship between sunspot groups and coronal mass ejections by determining source active regions. An investigation of the causal relationship between sunspot groups and coronal mass ejections by determining source active regions, 506, 1916–1926, https://doi.org/10.1093/mnras/stab1816.
Regalia, B., G. McKenzie, S. Gao, and K. Janowicz, 2016: Crowdsensing smart ambient environments and services. Trans. in GIS, 20, 382–398, https://doi.org/10.1111/tgis.12233.
Reiss, M. A., and Coauthors, 2021: The Observational Uncertainty of Coronal Hole Boundaries in Automated Detection Schemes. ApJ, 913, 28, https://doi.org/10.3847/1538-4357/abf2c8.
Richard, S. M., G. Pearthree, A. K. Aufdenkampe, J. Cutcher-Gershenfeld, M. Daniels, B. Gomez, D. Kinkade, and G. Percivall, 2014: Community-Developed Geoscience Cyberinfrastructure. Eos Trans. AGU, 95, 165–166, https://doi.org/10.1002/2014eo200001.
Rilee, M. L., K.-S. Kuo, T. Clune, A. Oloso, P. G. Brown, and H. Yu, 2016: Addressing the big-earth-data variety challenge with the hierarchical triangular mesh. Addressing the big-earth-data variety challenge with the hierarchical triangular mesh, https://doi.org/10.1109/bigdata.2016.7840700.
Rosenberg, D. E., and Coauthors, 2020: The Next Frontier: Making Research More Reproducible. J. Water Resour. Plann. Manage., 146, https://doi.org/10.1061/(asce)wr.1943-5452.0001215.
Roux, S., and Coauthors, 2018: Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat Biotechnol, 37, 29–37, https://doi.org/10.1038/nbt.4306.
Sadler, J. M., D. P. Ames, and S. J. Livingston, 2015: Extending HydroShare to enable hydrologic time series data as social media. Extending HydroShare to enable hydrologic time series data as social media, 18, 198–209, https://doi.org/10.2166/hydro.2015.331.
Sadykov, V. M., and A. G. Kosovichev, 2017: Relationships between Characteristics of the Line-of-sight Magnetic Field and Solar Flare Forecasts. ApJ, 849, 148, https://doi.org/10.3847/1538-4357/aa9119.
Sadykov, V. M., A. G. Kosovichev, I. N. Kitiashvili, and A. Frolov, 2019a: Statistical Properties of Soft X-Ray Emission of Solar Flares. ApJ, 874, 19, https://doi.org/10.3847/1538-4357/ab06c3.
——, ——, I. N. Sharykin, and G. S. Kerr, 2019b: Statistical Study of Chromospheric Evaporation in Impulsive Phase of Solar Flares. ApJ, 871, 2, https://doi.org/10.3847/1538-4357/aaf6b0.
Saito, M. A., and Coauthors, 2019: Progress and Challenges in Ocean Metaproteomics and Proposed Best Practices for Data Sharing. J. Proteome Res., 18, 1461–1476, https://doi.org/10.1021/acs.jproteome.8b00761.
——, and Coauthors, 2020: Development of an Ocean Protein Portal for Interactive Discovery and Education. J. Proteome Res., 20, 326–336, https://doi.org/10.1021/acs.jproteome.0c00382.
Saunders, J. K., D. A. Gaylord, N. A. Held, N. Symmonds, C. L. Dupont, A. Shepherd, D. B. Kinkade, and M. A. Saito, 2020: METATRYP v 2.0: Metaproteomic Least Common Ancestor Analysis for Taxonomic Inference Using Specialized Sequence Assemblies—Standalone Software and Web Servers for Marine Microorganisms and Coronaviruses. J. Proteome Res., 19, 4718–4729, https://doi.org/10.1021/acs.jproteome.0c00385.
——, and Coauthors, 2022: Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean. Proc. Natl. Acad. Sci. U.S.A., 119, https://doi.org/10.1073/pnas.2200014119.
Schaen, A. J., and Coauthors, 2020: Interpreting and reporting 40Ar/39Ar geochronologic data. Interpreting and reporting 40Ar/39Ar geochronologic data, 133, 461–487, https://doi.org/10.1130/b35560.1.
Sermet, Y., and I. Demir, 2019: Towards an information centric flood ontology for information management and communication. Earth Sci Inform, 12, 541–551, https://doi.org/10.1007/s12145-019-00398-9.
Sessa, J., S. Butts, T. Karim, G. Nelson, C. Norris, D. Serratos, and M. Uhen, 2018: The ePANDDA project: linking the Paleobiology Database, iDigBio, and iDigPaleo for biological and paleontological research, collections management, and outreach. BISS, 2, e26644, https://doi.org/10.3897/biss.2.26644.
Sessa, J. A., and Coauthors, 2017: THE EPANDDA PROJECT: LINKING THE PALEOBIOLOGY DATABASE, IDIGBIO, AND IDIGPALEO FOR BIOLOGICAL AND PALEONTOLOGICAL RESEARCH, COLLECTIONS MANAGEMENT, AND OUTREACH. THE EPANDDA PROJECT: LINKING THE PALEOBIOLOGY DATABASE, IDIGBIO, AND IDIGPALEO FOR BIOLOGICAL AND PALEONTOLOGICAL RESEARCH, COLLECTIONS MANAGEMENT, AND OUTREACH, https://doi.org/10.1130/abs/2017am-298208.
Sethi, R. J., and Y. Gil, 2016: Reproducibility in computer vision: Towards open publication of image analysis experiments as semantic workflows. Reproducibility in computer vision: Towards open publication of image analysis experiments as semantic workflows, https://doi.org/10.1109/escience.2016.7870918.
——, and ——, 2017: Scientific workflows in data analysis: Bridging expertise across multiple domains. Future Generation Computer Systems, 75, 256–270, https://doi.org/10.1016/j.future.2017.01.001.
Shi, X., and Coauthors, 2018: Long‐Lasting Poloidal ULF Waves Observed by Multiple Satellites and High‐Latitude SuperDARN Radars. JGR Space Physics, 123, 8422–8438, https://doi.org/10.1029/2018ja026003.
Shi, Y., D. M. Oliveira, D. J. Knipp, E. Zesta, T. Matsuo, and B. Anderson, 2019: Effects of Nearly Frontal and Highly Inclined Interplanetary Shocks on High‐Latitude Field‐Aligned Currents (FACs). Space Weather, 17, 1659–1673, https://doi.org/10.1029/2019sw002367.
——, D. J. Knipp, T. Matsuo, L. Kilcommons, and B. Anderson, 2020a: Modes of (FACs) Variability and Their Hemispheric Asymmetry Revealed by Inverse and Assimilative Analysis of Iridium Magnetometer Data. J. Geophys. Res. Space Physics, 125, https://doi.org/10.1029/2019ja027265.
——, ——, ——, ——, and ——, 2020b: Event Studies of High‐Latitude FACs With Inverse and Assimilative Analysis of AMPERE Magnetometer Data. J. Geophys. Res. Space Physics, 125, https://doi.org/10.1029/2019ja027266.
Shimizu, C., P. Hitzler, and M. Horridge, 2017: Rendering OWL in Description Logic Syntax. Rendering OWL in Description Logic Syntax, 109–113, https://doi.org/10.1007/978-3-319-70407-4_21.
Shreedharan, S., D. C. Bolton, J. Rivière, and C. Marone, 2020: Preseismic Fault Creep and Elastic Wave Amplitude Precursors Scale With Lab Earthquake Magnitude for the Continuum of Tectonic Failure Modes. Geophys. Res. Lett., 47, https://doi.org/10.1029/2020gl086986.
Song, J., and L. Di, 2017: Near-Real-Time OGC Catalogue Service for Geoscience Big Data. IJGI, 6, 337, https://doi.org/10.3390/ijgi6110337.
Sperhac, J. M., and Coauthors, 2020: GHub             : Building a glaciology gateway to unify a community. Concurrency Computat Pract Exper, 33, https://doi.org/10.1002/cpe.6130.
Stafford, T., M. Fisher, and Twilamoon Science, 2017: nsidc/qgreenland: v1.0.1. nsidc/qgreenland: v1.0.1, https://doi.org/10.5281/ZENODO.4558266.
Stern, C., R. Abernathey, J. Hamman, R. Wegener, C. Lepore, S. Harkins, and A. Merose, 2022: Pangeo Forge: Crowdsourcing Analysis-Ready, Cloud Optimized Data Production. Front. Clim., 3, https://doi.org/10.3389/fclim.2021.782909.
Stocks, K., S. Diggs, C. Olson, A. Pham, R. Arko, A. Shepherd, and D. Kinkade, 2018: SeaView: Bringing Together an Ocean of Data. Oceanog, 31, 71–71, https://doi.org/10.5670/oceanog.2018.111.
Straneo, F., and Coauthors, 2019: The Case for a Sustained Greenland Ice Sheet-Ocean Observing System (GrIOOS). Front. Mar. Sci., 6, https://doi.org/10.3389/fmars.2019.00138.
Sun, Z., H. Fang, M. Deng, A. Chen, P. Yue, and L. Di, 2015: Regular Shape Similarity Index: A Novel Index for Accurate Extraction of Regular Objects From Remote Sensing Images. IEEE Trans. Geosci. Remote Sensing, 53, 3737–3748, https://doi.org/10.1109/tgrs.2014.2382566.
——, L. Di, H. Fang, C. Zhang, E. Yu, L. Lin, X. Tan, and P. Yue, 2016a: Embedding Pub/Sub mechanism into OGC web services to augment agricultural crop monitoring. Embedding Pub/Sub mechanism into OGC web services to augment agricultural crop monitoring, https://doi.org/10.1109/agro-geoinformatics.2016.7577653.
——, ——, C. Zhang, L. Lin, H. Fang, X. Tan, and P. Yue, 2016b: Combining OGC WCS with SOAP to faciliate the retrieval of remote sensing imagery about agricultural fields. Combining OGC WCS with SOAP to faciliate the retrieval of remote sensing imagery about agricultural fields, https://doi.org/10.1109/agro-geoinformatics.2016.7577652.
——, H. Fang, L. Di, P. Yue, X. Tan, and Y. Bai, 2016c: Developing a web-based system for supervised classification of remote sensing images. Geoinformatica, 20, 629–649, https://doi.org/10.1007/s10707-016-0252-3.
——, and Coauthors, 2017a: GeoFairy: Towards a one-stop and location based Service for Geospatial Information Retrieval. Computers, Environment and Urban Systems, 62, 156–167, https://doi.org/10.1016/j.compenvurbsys.2016.11.007.
——, and Coauthors, 2017b: Establish cyberinfrastructure to facilitate agricultural drought monitoring. Establish cyberinfrastructure to facilitate agricultural drought monitoring, https://doi.org/10.1109/agro-geoinformatics.2017.8047054.
——, and Coauthors, 2017c: CyberConnector: a service-oriented system for automatically tailoring multisource Earth observation data to feed Earth science models. Earth Sci Inform, 11, 1–17, https://doi.org/10.1007/s12145-017-0308-4.
——, L. Di, and H. Fang, 2018: Using long short-term memory recurrent neural network in land cover classification on Landsat and Cropland data layer time series. International Journal of Remote Sensing, 40, 593–614, https://doi.org/10.1080/01431161.2018.1516313.
——, ——, and J. Gaigalas, 2019: SUIS: Simplify the use of geospatial web services in environmental modelling. Environmental Modelling & Software, 119, 228–241, https://doi.org/10.1016/j.envsoft.2019.06.005.
——, ——, A. Burgess, J. A. Tullis, and A. B. Magill, 2020a: Geoweaver: Advanced Cyberinfrastructure for Managing Hybrid Geoscientific AI Workflows. IJGI, 9, 119, https://doi.org/10.3390/ijgi9020119.
——, ——, B. Cash, and J. Gaigalas, 2020b: Advanced cyberinfrastructure for intercomparison and validation of climate models. Environmental Modelling & Software, 123, 104559, https://doi.org/10.1016/j.envsoft.2019.104559.
——, ——, S. Cvetojevic, and Z. Yu, 2020c: GeoFairy2: A Cross-Institution Mobile Gateway to Location-Linked Data for In-Situ Decision Making. IJGI, 10, 1, https://doi.org/10.3390/ijgi10010001.
——, and Coauthors, 2022: A review of Earth Artificial Intelligence. Computers & Geosciences, 159, 105034, https://doi.org/10.1016/j.cageo.2022.105034.
Tamma, V., M. Dragoni, R. Gonçalves, and A. Ławrynowicz, 2016: Ontology Engineering. Ontology Engineering, https://doi.org/10.1007/978-3-319-33245-1.
Tan, X., and Coauthors, 2015: Building an Elastic Parallel OGC Web Processing Service on a Cloud-Based Cluster: A Case Study of Remote Sensing Data Processing Service. Sustainability, 7, 14245–14258, https://doi.org/10.3390/su71014245.
——, and Coauthors, 2017: Parallel Agent-as-a-Service (P-AaaS) Based Geospatial Service in the Cloud. Remote Sensing, 9, 382, https://doi.org/10.3390/rs9040382.
Theurich, G., and Coauthors, 2016: The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability, 97, 1229–1247, https://doi.org/10.1175/bams-d-14-00164.1.
Thomer, A., ??, ??, and ??, 2018: iSamples user stories: common themes and areas for future work. iSamples user stories: common themes and areas for future work, https://doi.org/10.6084/M9.FIGSHARE.4272164.V1.
Tikoff, B., V. Chatzaras, J. Newman, and N. M. Roberts, 2019: Big data in microstructure analysis: Building a universal orientation system for thin sections. Journal of Structural Geology, 125, 226–234, https://doi.org/10.1016/j.jsg.2018.09.019.
Ton That, D. H., G. Fils, Z. Yuan, and T. Malik, 2017: Sciunits: Reusable Research Objects. Sciunits: Reusable Research Objects, https://doi.org/10.1109/escience.2017.51.
Tucker, G. E., and Coauthors, 2022: CSDMS: a community platform for numerical modeling of Earth surface processes. Geosci. Model Dev., 15, 1413–1439, https://doi.org/10.5194/gmd-15-1413-2022.
Tucker, T., D. Giglio, M. Scanderbeg, and S. S. P. Shen, 2020: Argovis: A Web Application for Fast Delivery, Visualization, and Analysis of Argo Data. Argovis: A Web Application for Fast Delivery, Visualization, and Analysis of Argo Data, 37, 401–416, https://doi.org/10.1175/jtech-d-19-0041.1.
Uhen, M. D., S. Goring, J. Jenkins, and J. Williams, 2018: EarthLife Consortium: Supporting digital paleobiology. PAGES Mag, 26, 78–79, https://doi.org/10.22498/pages.26.2.78.
Uhen, M. D., P. I. Buckland, S. J. Goring, J. P. Jenkins, and J. W. Williams, 2021: The EarthLife Consortium API: an extensible, open-source service for accessing fossil data and taxonomies from multiple community paleodata resources. Frontiers of Biogeography, 13, https://doi.org/10.21425/f5fbg50711.
University of Oregon, 2017: Estimating the Freshwater Flux from the Greenland Ice Sheet Workshop Report, American Geophysical Union, 2018. Estimating the Freshwater Flux from the Greenland Ice Sheet Workshop Report, American Geophysical Union, 2018, https://doi.org/10.18739/A24M9198B.
Valcke, S., A. Craig, R. Dunlap, and G. D. Riley, 2016: Sharing Experiences and Outlook on Coupling Technologies for Earth System Models. Sharing Experiences and Outlook on Coupling Technologies for Earth System Models, 97, ES53–ES56, https://doi.org/10.1175/bams-d-15-00239.1.
Valentine, D., I. Zaslavsky, S. Richard, O. Meier, G. Hudman, B. Peucker‐Ehrenbrink, and K. Stocks, 2020: EarthCube Data Discovery Studio: A gateway into geoscience data discovery and exploration with Jupyter notebooks. Concurrency Computat Pract Exper, 33, https://doi.org/10.1002/cpe.6086.
Walker, J., 2021: Geology in an Online World. GSAT, 31, 4–7, https://doi.org/10.1130/gsatprsadrs20.1.
Walker, J. D., and Coauthors, 2019: StraboSpot data system for structural geology. StraboSpot data system for structural geology, 15, 533–547, https://doi.org/10.1130/ges02039.1.
Werthmüller, D., R. Rochlitz, O. Castillo-Reyes, and L. Heagy, 2021: Towards an open-source landscape for 3-D CSEM modelling. Towards an open-source landscape for 3-D CSEM modelling, 227, 644–659, https://doi.org/10.1093/gji/ggab238.
Williams, J. W., and Coauthors, 2018a: The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quat. res., 89, 156–177, https://doi.org/10.1017/qua.2017.105.
Williams, J. W., D. Kaufman, A. Newton, and L. von Gunten, 2018b: Building open data: Data stewards and community-curated data resources. PAGES Mag, 26, 50–51, https://doi.org/10.22498/pages.26.2.50.
——, ——, ——, and ——, 2018c: Building and harnessing open paleodata. PAGES Mag, 26, 49–49, https://doi.org/10.22498/pages.26.2.49.
Woodbury, D. H., D. P. Ames, J. Kadlec, S. Duncan, and G. Gault, 2016: A New Open-Access HUC-8 Based Downscaled CMIP-5 Climate Model Forecast Dataset for the Conterminous United States. J Am Water Resour Assoc, 52, 906–915, https://doi.org/10.1111/1752-1688.12437.
Wood-Charlson, E. M., and E. F. DeLong, 2021: EarthCube Oceanography and Geobiology Environmental ’Omics Research Coordination Network Workshop 1 Report. EarthCube Oceanography and Geobiology Environmental ’Omics Research Coordination Network Workshop 1 Report, https://doi.org/10.13140/RG.2.1.4908.4561.
Wu, J., L. Yu, and H. Yu, 2015: Texture-based edge bundling: A web-based approach for interactively visualizing large graphs. Texture-based edge bundling: A web-based approach for interactively visualizing large graphs, https://doi.org/10.1109/bigdata.2015.7364046.
Wyngaard, J., H. Lynch, J. Nabrzyski, A. Pope, and S. Jha, 2017: Hacking at the Divide Between Polar Science and HPC: Using Hackathons as Training Tools. Hacking at the Divide Between Polar Science and HPC: Using Hackathons as Training Tools, https://doi.org/10.1109/ipdpsw.2017.177.
Xie, Y., E. He, X. Jia, H. Bao, X. Zhou, R. Ghosh, and P. Ravirathinam, 2021a: A Statistically-Guided Deep Network Transformation and Moderation Framework for Data with Spatial Heterogeneity. A Statistically-Guided Deep Network Transformation and Moderation Framework for Data with Spatial Heterogeneity, https://doi.org/10.1109/icdm51629.2021.00088.
——, X. Jia, H. Bao, X. Zhou, J. Yu, R. Ghosh, and P. Ravirathinam, 2021b: Spatial-Net. Spatial-Net, https://doi.org/10.1145/3474717.3483970.
——, ——, S. Shekhar, H. Bao, and X. Zhou, 2021c: Significant DBSCAN+: Statistically Robust Density-based Clustering. ACM Trans. Intell. Syst. Technol., 12, 1–26, https://doi.org/10.1145/3474842.
——, S. Shekhar, and Y. Li, 2023: Statistically-Robust Clustering Techniques for Mapping Spatial Hotspots: A Survey. ACM Comput. Surv., 55, 1–38, https://doi.org/10.1145/3487893.
Yang, C., Q. Huang, Z. Li, K. Liu, and F. Hu, 2016: Big Data and cloud computing: innovation opportunities and challenges. International Journal of Digital Earth, 10, 13–53, https://doi.org/10.1080/17538947.2016.1239771.
——, M. Yu, F. Hu, Y. Jiang, and Y. Li, 2017: Utilizing Cloud Computing to address big geospatial data challenges. Computers, Environment and Urban Systems, 61, 120–128, https://doi.org/10.1016/j.compenvurbsys.2016.10.010.
Youens-Clark, K., M. Bomhoff, A. J. Ponsero, E. M. Wood-Charlson, J. Lynch, I. Choi, J. H. Hartman, and B. L. Hurwitz, 2019: iMicrobe: Tools and data-driven discovery platform for the microbiome sciences. iMicrobe: Tools and data-driven discovery platform for the microbiome sciences, 8, https://doi.org/10.1093/gigascience/giz083.
Youngdahl, A., D.-H. Ton-That, and T. Malik, 2019: SciInc: A Container Runtime for Incremental Recomputation. SciInc: A Container Runtime for Incremental Recomputation, https://doi.org/10.1109/escience.2019.00040.
Yu, L., and H. Yu, 2016: A study of scientific visualization on heterogeneous processors using Legion. A study of scientific visualization on heterogeneous processors using Legion, https://doi.org/10.1109/ldav.2016.7874341.
——, F. Zhu, H. Yu, J. Wang, and K.-S. Kuo, 2016a: Feature extraction and tracking for large-scale geospatial data. Feature extraction and tracking for large-scale geospatial data, https://doi.org/10.1109/igarss.2016.7729384.
——, M. L. Rilee, Y. Pan, F. Zhu, K.-S. Kuo, and H. Yu, 2017: Visual analytics with unparalleled variety scaling for big earth data. Visual analytics with unparalleled variety scaling for big earth data, https://doi.org/10.1109/bigdata.2017.8257966.
Yu, S., B. Chen, K. K. Reeves, D. E. Gary, S. Musset, G. D. Fleishman, G. M. Nita, and L. Glesener, 2020: Magnetic Reconnection during the Post-impulsive Phase of a Long-duration Solar Flare: Bidirectional Outflows as a Cause of Microwave and X-Ray Bursts. ApJ, 900, 17, https://doi.org/10.3847/1538-4357/aba8a6.
Yu, X., C. Duffy, Y. Gil, L. Leonard, G. Bhatt, and E. Thomas, 2016b: Cyber-Innovated Watershed Research at the Shale Hills Critical Zone Observatory. IEEE Systems Journal, 10, 1239–1250, https://doi.org/10.1109/jsyst.2015.2484219.
Yuan, Z., D. Ton That, S. Kothari, G. Fils, and T. Malik, 2018: Utilizing Provenance in Reusable Research Objects. Informatics, 5, 14, https://doi.org/10.3390/informatics5010014.
Yurchyshyn, V., X. Yang, G. Nita, G. Fleishman, V. Abramenko, S. Inoue, E.-K. Lim, and W. Cao, 2022: Magnetic Field Re-configuration Associated With a Slow Rise Eruptive X1.2 Flare in NOAA Active Region 11944. Front. Astron. Space Sci., 9, https://doi.org/10.3389/fspas.2022.816523.
Zhang, C., Z. Sun, G. Heo, L. Di, and L. Lin, 2016: A GeoPackage implementation of common map API on Google Maps and OpenLayers to manipulate agricultural data on mobile devices. A GeoPackage implementation of common map API on Google Maps and OpenLayers to manipulate agricultural data on mobile devices, https://doi.org/10.1109/agro-geoinformatics.2016.7577654.
——, L. Di, Z. Sun, E. G. Yu, L. Hu, L. Lin, J. Tang, and Md. S. Rahman, 2017a: Integrating OGC Web Processing Service with cloud computing environment for Earth Observation data. Integrating OGC Web Processing Service with cloud computing environment for Earth Observation data, https://doi.org/10.1109/agro-geoinformatics.2017.8047065.
Zhang, D., P. K. Dera, P. J. Eng, J. E. Stubbs, J. S. Zhang, V. B. Prakapenka, and M. L. Rivers, 2017b: High Pressure Single Crystal Diffraction at PX^2. JoVE, https://doi.org/10.3791/54660.
Zhang, L., E. Moges, J. W. Kirchner, E. Coda, T. Liu, A. S. Wymore, Z. Xu, and L. G. Larsen, 2021: <scp>CHOSEN</scp>             : A synthesis of hydrometeorological data from intensively monitored catchments and comparative analysis of hydrologic extremes. Hydrological Processes, 35, https://doi.org/10.1002/hyp.14429.
Zheng, C. L., V. Ratnakar, Y. Gil, and S. K. McWeeney, 2015: Use of semantic workflows to enhance transparency and reproducibility in clinical omics. Genome Med, 7, https://doi.org/10.1186/s13073-015-0202-y.
Zheng, W., 2022: Glacier geometry and flow speed determine how Arctic marine-terminating glaciers respond to lubricated beds. The Cryosphere, 16, 1431–1445, https://doi.org/10.5194/tc-16-1431-2022.
——, S. Grigsby, F. Sapienza, J. Taylor, T. Snow, F. Pérez, and M. Siegfried, 2021: Mapping ice flow velocity using an easy and interactive feature tracking workflow. Mapping ice flow velocity using an easy and interactive feature tracking workflow, https://doi.org/10.5281/ZENODO.5496306.
Zhou, Y., J. Wu, L. Yu, H. Yu, and Z. Tang, 2016: A geohydrologie data visualization framework with an extendable user interface design. A geohydrologie data visualization framework with an extendable user interface design, https://doi.org/10.1109/bigdata.2016.7840865.
Zhu, R., Y. Hu, K. Janowicz, and G. McKenzie, 2016: Spatial signatures for geographic feature types: examining gazetteer ontologies using spatial statistics. Trans. in GIS, 20, 333–355, https://doi.org/10.1111/tgis.12232.