NCAR-Jobqueue#
Last week, we added posts detailing how to configure Dask using the new PBS scheduler on Casper. In this week’s example, we provide an example of the recent updates to ncar-jobqueue, added by Anderson Banihirwe, which allow users to easily configure dask on Casper without having to add many extra steps.
How can I use the new updates to NCAR-jobqueue?#
You must update the package to use the newest updates. You can update using conda!
conda update ncar-jobqueue
If you haven’t installed this package yet, replace the previous line with
conda install -c conda-forge ncar-jobqueue
How is NCAR-Jobqueue different than Dask-Jobqueue#
NCAR-jobqueue was created to easily interface Dask-Jobqueue, with the focus on using NCAR machines such as Casper or Cheyenne. NCAR-jobqueue sets up your PBS Cluster, using the same arguements as you would enter in the more general Dask-Jobqueue.
How would I use this on within my workflow on Casper?#
The overall workflow is the same - you inport dask related packages, configure your cluster, the scale your job depending on the number of jobs you would like. In last week’s example, we used the following example:
cluster = PBSCluster(
cores=1, # The number of cores you want
memory='10GB', # Amount of memory
processes=1, # How many processes
queue='casper', # The type of queue to utilize (/glade/u/apps/dav/opt/usr/bin/execcasper)
local_directory='$TMPDIR', # Use your local directory
resource_spec='select=1:ncpus=1:mem=10GB', # Specify resources
project='project_id', # Input your project ID here
walltime='02:00:00', # Amount of wall time
interface='ib0', # Interface to use
)
Where once you update ~/.config/dask/jobqueue.yaml
file with your desired parameters, you can use
cluster = PBSCluster(queue='casper')
Although, you would still need to port the Dask dashboard using this line
# Change your url to the dask dashboard so you can see it
dask.config.set({'distributed.dashboard.link':'https://jupyterhub.hpc.ucar.edu/stable/user/{USER}/proxy/{port}/status'})
Instead, using ncar-jobqueue, we use the following:
from ncar_jobqueue import NCARCluster
from dask.distributed import Client
cluster = NCARCluster(project='XXXXXXXX')
cluster.scale(jobs=2)
client = Client(cluster)
This sets up the scheduler, spins up the cluster, and edits Dask dashboard url so you can easily click it to view it. You are still able to configure arguements within NCARCluster
as you would in PBSCluster
, but ncar-jobqueue handles many of the system-specific defaults for you.
While this example covers how to use it on Casper, this same ncar-jobqueue example could be used on Cheyenne, without having to change anything!
Shoutout to Anderson for updating this package and making using Dask on Casper/Cheyenne much easier!