General Applied Math#
Overview#
Working with math is perhaps the most common task in any kind of geoscience workflow in Python. This notebook will cover:
Python
math
vs.numpy
Mathematical Constants
Trigonmetric and Hyperbolic Functions
Algebraic Functions
Degrees and Radians
Rounding
Exponents and Logarithms
Sorting
math
vs. numpy
#
math
is a built-in part of the standard Python library. This is a useful module for common and simple computations when working with single input values. To work with arrays or large datasets, numpy
is a good alternative to the math
module. numpy
is a powerful external Python package for working with arrays and mathematical functions. numpy
is package developed to work with scientific computing and math functions and is tailored to run much faster with large datasets and arrays.
Important Note
Themath
library cannot be used with complex numbers. Instead, equivalent functions can be found within the standard Python cmath
library
Mathematical Constants#
Fixed mathematical constants are built into the standard Python libraries as well as external packages like numpy
pi
#
pi
represents the ratio of a cicle’s circumferences to its diameter
import math
import numpy as np
print(f"(numpy) pi = {np.pi}")
print(f"(standard library) pi = {math.pi}")
(numpy) pi = 3.141592653589793
(standard library) pi = 3.141592653589793
e
#
e
is the base of the natural logarithm
import math
import numpy as np
print(f"(numpy) e = {np.e}")
print(f"(standard library) e = {math.e}")
(numpy) e = 2.718281828459045
(standard library) e = 2.718281828459045
Trigonmetric and Hyperbolic Functions#
sin
, cos
, and tan
#
The functions sin
, cos
, and tan
are part of the standard Python math
library when working with single value inputs. When working with lists and arrays, these functions can be evaluated with the external package numpy
. By default, the input and output values are in radians.
import math
import numpy as np
input = 3.14
print("Single Value input")
print(f"\tsin (math) = {math.sin(input)}")
print(f"\tsin (numpy) = {np.sin(input)}")
print(f"\tcos (math) = {math.cos(input)}")
print(f"\tcos (numpy) = {np.cos(input)}")
print(f"\ttan (math) = {math.tan(input)}")
print(f"\ttan (numpy) = {np.tan(input)}")
inputs = [1.2, 2.3, 3.14]
print("\nMultiple Value Input (array/list)")
print(f"\tsin (numpy) = {np.sin(inputs)}")
print(f"\tcos (numpy) = {np.cos(inputs)}")
print(f"\ttan (numpy) = {np.tan(inputs)}")
Single Value input
sin (math) = 0.0015926529164868282
sin (numpy) = 0.0015926529164868282
cos (math) = -0.9999987317275395
cos (numpy) = -0.9999987317275395
tan (math) = -0.001592654936407223
tan (numpy) = -0.001592654936407223
Multiple Value Input (array/list)
sin (numpy) = [0.93203909 0.74570521 0.00159265]
cos (numpy) = [ 0.36235775 -0.66627602 -0.99999873]
tan (numpy) = [ 2.57215162e+00 -1.11921364e+00 -1.59265494e-03]
cosecant
, secant
, and cotangent
#
The functions csc
, sec
, and cot
are not part of the standard Python math
library or numpy
. Instead, these values can be found as the reciprocal of the values sin
, cos
, and tan
csc = 1 / sin
sec = 1 / cos
cot = 1 / tan
import math
import numpy as np
input = 3.14
print("Single Value input")
print(f"\tcsc (math) = {1 / math.sin(input)}")
print(f"\tcsc (numpy) = {1 / np.sin(input)}")
print(f"\tsec (math) = {1 / math.cos(input)}")
print(f"\tsec (numpy) = {1 / np.cos(input)}")
print(f"\tcot (math) = {1 / math.tan(input)}")
print(f"\tcot (numpy) = {1 / np.tan(input)}")
inputs = [1.2, 2.3, 3.14]
print("\Multiple Value Input (array/list)")
print(f"\tcsc (numpy) = {1 / np.sin(inputs)}")
print(f"\tsec (numpy) = {1 / np.cos(inputs)}")
print(f"\tcot (numpy) = {1 / np.tan(inputs)}")
Single Value input
csc (math) = 627.8831939138764
csc (numpy) = 627.8831939138764
sec (math) = -1.000001268274069
sec (numpy) = -1.000001268274069
cot (math) = -627.8823975869133
cot (numpy) = -627.8823975869133
\Multiple Value Input (array/list)
csc (numpy) = [ 1.07291638 1.34101249 627.88319391]
sec (numpy) = [ 2.7597036 -1.50087947 -1.00000127]
cot (numpy) = [ 3.88779569e-01 -8.93484463e-01 -6.27882398e+02]
<>:14: SyntaxWarning: invalid escape sequence '\M'
<>:14: SyntaxWarning: invalid escape sequence '\M'
/tmp/ipykernel_2053/1093943048.py:14: SyntaxWarning: invalid escape sequence '\M'
print("\Multiple Value Input (array/list)")
asin
, acos
, atan
, and atan2
#
The inverse trigonometric functions asin
, acos
, atan
, and atan2
are part of the standard Python math
library when working with single value inputs. When working with lists and arrays, these functions can be evaluated with the external package numpy
. By default, the input and output values are in radians.
import math
import numpy as np
input = 0.5
print("Single Value input")
print(f"\tasin (math) = {math.asin(input)}")
print(f"\tasin (numpy) = {np.arcsin(input)}")
print(f"\tacos (math) = {math.acos(input)}")
print(f"\tacos (numpy) = {np.arccos(input)}")
print(f"\tatan (math) = {math.atan(input)}")
print(f"\tatan (numpy) = {np.arctan(input)}")
inputs = [0.5, 0.75, 0.14]
print("\nMultiple Value Input (array/list)")
print(f"\tasin (numpy) = {np.arcsin(inputs)}")
print(f"\tacos (numpy) = {np.arccos(inputs)}")
print(f"\tatan (numpy) = {np.arctan(inputs)}")
Single Value input
asin (math) = 0.5235987755982989
asin (numpy) = 0.5235987755982989
acos (math) = 1.0471975511965979
acos (numpy) = 1.0471975511965979
atan (math) = 0.4636476090008061
atan (numpy) = 0.4636476090008061
Multiple Value Input (array/list)
asin (numpy) = [0.52359878 0.84806208 0.14046141]
acos (numpy) = [1.04719755 0.72273425 1.43033491]
atan (numpy) = [0.46364761 0.64350111 0.13909594]
sinh
, cosh
, and tanh
#
The hyperbolic trigonometric functions are analogous functions that make use of the hyperbola instead of the circle. The trigonometric functions sinh
, cosh
, and tanh
are part of the standard Python math
library when working with single value inputs. When working with lists and arrays, these functions can be evaluated with the external package numpy
. By default, the input and output values are in radians.
import math
import numpy as np
input = 3.14
print("Single Value input")
print(f"\tsinh (math) = {math.sinh(input)}")
print(f"\tsinh (numpy) = {np.sinh(input)}")
print(f"\tcosh (math) = {math.cosh(input)}")
print(f"\tcosh (numpy) = {np.cosh(input)}")
print(f"\ttanh (math) = {math.tanh(input)}")
print(f"\ttanh (numpy) = {np.tanh(input)}")
inputs = [1.2, 2.3, 3.14]
print("\nMultiple Value Input (array/list)")
print(f"\tsinh (numpy) = {np.sinh(inputs)}")
print(f"\tcosh (numpy) = {np.cosh(inputs)}")
print(f"\ttanh (numpy) = {np.tanh(inputs)}")
Single Value input
sinh (math) = 11.53029203041011
sinh (numpy) = 11.53029203041011
cosh (math) = 11.573574828312076
cosh (numpy) = 11.573574828312076
tanh (math) = 0.9962602049458319
tanh (numpy) = 0.9962602049458319
Multiple Value Input (array/list)
sinh (numpy) = [ 1.50946136 4.93696181 11.53029203]
cosh (numpy) = [ 1.81065557 5.03722065 11.57357483]
tanh (numpy) = [0.83365461 0.9800964 0.9962602 ]
asinh
, acosh
, and atanh
#
The inverse hyperbolic trigonmetric functions asinh
, acosh
, and atanh
are part of the standard Python math
library when working with single value inputs. When working with lists and arrays, these functions can be evaluated with the external package numpy
. By default, the input and output values are in radians.
import math
import numpy as np
input = 3.14
print("Single Value input")
print(f"\tasinh (math) = {math.asinh(input)}")
print(f"\tasinh (numpy) = {np.arcsinh(input)}")
print(f"\tacosh (math) = {math.acosh(input)}")
print(f"\tacosh (numpy) = {np.arccosh(input)}")
input = 0.5
print(f"\tatanh (math) = {math.atanh(input)}")
print(f"\tatanh (numpy) = {np.arctanh(input)}")
inputs = [1.5, 1.75, 3.14]
print("\nMultiple Value Input (array/list)")
print(f"\tasinh (numpy) = {np.arcsinh(inputs)}")
print(f"\tacosh (numpy) = {np.arccosh(inputs)}")
inputs = [0.5, 0.75, 0.14]
print(f"\tatanh (numpy) = {np.arctanh(inputs)}")
Single Value input
asinh (math) = 1.8618125572133835
asinh (numpy) = 1.8618125572133835
acosh (math) = 1.810991348900196
acosh (numpy) = 1.810991348900196
atanh (math) = 0.5493061443340548
atanh (numpy) = 0.5493061443340548
Multiple Value Input (array/list)
asinh (numpy) = [1.19476322 1.32589777 1.86181256]
acosh (numpy) = [0.96242365 1.15881036 1.81099135]
atanh (numpy) = [0.54930614 0.97295507 0.14092558]
Algebraic Functions#
sum
and prod
#
To find the sum or product of a list of values, Python include sum
and prod
as part of the standard Python library and are also available as well as part of the numpy
library
import math
import numpy as np
input = [1.2, 2.3, 3.4, 4.5]
print("sum of input")
print(f"\tsum (standard library) = {sum(input)}")
print(f"\tsum (numpy) = {np.sum(input)}")
print("\nproduct of input")
print(f"\tprod (math) = {math.prod(input)}")
print(f"\tprod (numpy) = {np.prod(input)}")
sum of input
sum (standard library) = 11.4
sum (numpy) = 11.4
product of input
prod (math) = 42.227999999999994
prod (numpy) = 42.227999999999994
cumsum
and cumprod
#
The numpy
package can be used to find the cumulative sum or product of a list of values.
import numpy as np
input = [[1, 2, 3], [4, 5, 6]]
print("cumulative sum")
print(f"\tcumsum (numpy) = {np.cumsum(input)}")
print("\ncumulative product")
print(f"\tcumprod (numpy) = {np.cumprod(input)}")
cumulative sum
cumsum (numpy) = [ 1 3 6 10 15 21]
cumulative product
cumprod (numpy) = [ 1 2 6 24 120 720]
abs
#
The standard Python math
module includes the function to find the absolute value of a single value. When working with lists and arrays, the values can be evaluated with the external package numpy
.
import numpy as np
input = -3.14
print("Single Value input")
print(f"\t(numpy) {input} = {np.abs(input)}")
print(f"\t(standard library) {input} = {abs(input)}")
inputs = [-1.5, -1.75, -3.14]
print("\nMultiple Value Input (array/list)")
print(f"\t(numpy) {inputs} = {np.abs(inputs)}")
Single Value input
(numpy) -3.14 = 3.14
(standard library) -3.14 = 3.14
Multiple Value Input (array/list)
(numpy) [-1.5, -1.75, -3.14] = [1.5 1.75 3.14]
avg
#
When working with multiple values, the external numpy
package can be used to evaluated the average value across the list of values.
import numpy as np
input_value = [1, 2, 3]
print("Single List")
print(f"\t{input_value} = {np.average(input_value)}")
print("List of Lists - Flattened to a Single List")
input_values = [[1, 2, 3], [4, 5, 6]]
print(f"\t{input_values} = {np.mean(input_values)}")
print("List of Lists")
input_values = [[1, 2, 3], [4, 5, 6]]
print(f"\t{input_values} = {np.mean(input_values, axis=1)}")
Single List
[1, 2, 3] = 2.0
List of Lists - Flattened to a Single List
[[1, 2, 3], [4, 5, 6]] = 3.5
List of Lists
[[1, 2, 3], [4, 5, 6]] = [2. 5.]
mod
#
The modulo operator (%
) can be used to return the remainder from dividing values.
x1 mod x2 = x1 % x2
import numpy as np
x1 = 17
x2 = 3
print("Single Value input")
print(f"\t(standard library) {x1} % {x2} = {x1 % x2}")
print(f"\t(numpy) {x1} mod {x2} = {np.mod(x1, x2)}")
x1_values = [17, 4]
x2_values = [3, 2]
print("\nMultiple Value Input (array/list)")
print(f"\t(numpy) {x1_values} mod {x2_values} = {np.mod(x1_values, x2_values)}")
Single Value input
(standard library) 17 % 3 = 2
(numpy) 17 mod 3 = 2
Multiple Value Input (array/list)
(numpy) [17, 4] mod [3, 2] = [2 0]
Degrees and Radians#
The input and output values of trigonometric functions like sin
and cos
expect radians. Python allows for various functions to convert between radian and degree values, both has part of the standard Python math
library and the external numpy
package when working with arrays.
import math
import numpy as np
input = 32 # degrees
print("Convert from Degrees to Radians")
print(f"\t(math) {input} degrees = {math.radians(input)} radians")
print(f"\t(numpy) {input} degrees = {np.deg2rad(input)} radians")
print(f"\t(numpy) {input} degrees = {np.radians(input)} raidans")
input = 0.5585 # radians
print("\nConvert from Radians to Degrees")
print(f"\t(math) {input} radians = {math.degrees(input)} degrees")
print(f"\t(numpy) {input} radians = {np.rad2deg(input)} degrees")
print(f"\t(numpy) {input} radians = {np.degrees(input)} degrees")
Convert from Degrees to Radians
(math) 32 degrees = 0.5585053606381855 radians
(numpy) 32 degrees = 0.5585053606381855 radians
(numpy) 32 degrees = 0.5585053606381855 raidans
Convert from Radians to Degrees
(math) 0.5585 radians = 31.999692858056477 degrees
(numpy) 0.5585 radians = 31.999692858056477 degrees
(numpy) 0.5585 radians = 31.999692858056477 degrees
Rounding#
Python includes functions to round off a decimal point value to a desired accuracy, either by rounding up, rounding down, or by manually truncating the decimal value.
round
, around
, floor
, ceil
#
import math
import numpy as np
input = 3.1415926535
print("Rounding Up")
print(f"\t(math) {input} to next nearest integer = {math.ceil(input)}")
print(f"\t(numpy) {input} to 3 decimal points = {np.around(input, 3)}")
print("\nRounding Down")
print(f"\t(math) {input} to nearest integer = {math.floor(input)}")
print("\nRound to Closest Integer")
print(f"\t(standard library) {input} to closest integer = {round(input)}")
print(f"\t(standard library) {input} to closest integer = {int(input)}")
Rounding Up
(math) 3.1415926535 to next nearest integer = 4
(numpy) 3.1415926535 to 3 decimal points = 3.142
Rounding Down
(math) 3.1415926535 to nearest integer = 3
Round to Closest Integer
(standard library) 3.1415926535 to closest integer = 3
(standard library) 3.1415926535 to closest integer = 3
truncate
#
Truncate will cut off the decimal points after a certain value, without rounding up or down
input = 3.1415926535
# Truncate decimal points after 3 points
decimal_values = str(input).split(".")
truncate_decimal = decimal_values[1][:3]
truncate_output = float(decimal_values[0] + "." + truncate_decimal)
print(truncate_output)
3.141
Exponents and Logarithms#
exp
#
Raise e (e approximately = 2.71828) to a given power x
exp(x) = e^x
The exponential is both part of the standard Python math
library for single values and can be calculated for multiple values in a list with numpy
import math
import numpy as np
power = 3.2
print("Single Value input")
print(f"\t(math) e^{power} = {math.exp(power)}")
print(f"\t(numpy) e^{power} = {np.exp(power)}")
power_list = [1.2, 2.2, 3.2]
print("\nMultiple Value Input (array/list)")
print(f"\t(numpy) e^{power_list} = {np.exp(power_list)}")
Single Value input
(math) e^3.2 = 24.532530197109352
(numpy) e^3.2 = 24.532530197109352
Multiple Value Input (array/list)
(numpy) e^[1.2, 2.2, 3.2] = [ 3.32011692 9.0250135 24.5325302 ]
log
, log10
, and log2
#
Python includes many different functions to calculate the logarithm with various bases of a given value, with the standard Python math
library for single values and the arrays/lists with numpy
import math
import numpy as np
print("Single Value input (Base 10)")
input = 3.2
base = 10
print(f"\tlog base 10 of {input} (math.log10) = {math.log10(input)}")
print(f"\tlog base {base} of {input} (math.log) = {math.log(input, base)}")
print(f"\tlog base 10 of {input} (np.log10) = {np.log10(input)}")
print("\nSingle Value input (Base 2)")
input = 3.2
base = 2
print(f"\tlog base 2 of {input} (math.log2) = {math.log2(input)}")
print(f"\tlog base {base} of {input} (math.log) = {math.log(input, base)}")
print(f"\tlog base 2 of {input} (np.log2) = {np.log2(input)}")
print("\nSingle Value input (Base e)")
input = 3.2
base = math.e
print(f"\tlog base e of {input} (math.log) = {math.log(input)}")
print(f"\tlog base e of {input} (math.log) = {math.log(input, base)}")
print(f"\tlog base e of {input} (np.log) = {np.log(input)}")
input_list = [1.2, 2.2, 3.2]
print("\nMultiple Value Input (array/list)")
print("\tBase 10")
print(f"\t\tlog10 (np.log10) = {np.log10(input_list)}")
print("\tBase 2")
print(f"\t\tlog2 (np.log2) = {np.log2(input_list)}")
print("\tBase e")
print(f"\t\tlog (np.log) = {np.log(input_list)}")
Single Value input (Base 10)
log base 10 of 3.2 (math.log10) = 0.505149978319906
log base 10 of 3.2 (math.log) = 0.5051499783199059
log base 10 of 3.2 (np.log10) = 0.505149978319906
Single Value input (Base 2)
log base 2 of 3.2 (math.log2) = 1.6780719051126378
log base 2 of 3.2 (math.log) = 1.6780719051126378
log base 2 of 3.2 (np.log2) = 1.6780719051126378
Single Value input (Base e)
log base e of 3.2 (math.log) = 1.1631508098056809
log base e of 3.2 (math.log) = 1.1631508098056809
log base e of 3.2 (np.log) = 1.1631508098056809
Multiple Value Input (array/list)
Base 10
log10 (np.log10) = [0.07918125 0.34242268 0.50514998]
Base 2
log2 (np.log2) = [0.26303441 1.13750352 1.67807191]
Base e
log (np.log) = [0.18232156 0.78845736 1.16315081]
Sorting#
Python includes functions to organize and sort lists of numbers or strings
Functions to sort lists and arrays are part of the standard Python library as well as numpy
Sorting in Python and Numpy#
Python has two similar sorting functions: list.sort()
and sorted()
list.sort()
reorganizes a numerical or string list in-place, but returns None
, while sorted()
creates a new copy of the list with the sorted elements.
lst = [2, 1, 3]
lst.sort()
print(lst)
>> [1, 2, 3]
print(lst.sort())
>> None
lst = [2, 1, 3]
new_sorted_list = sorted(lst)
print(lst)
>> [2, 1, 3]
print(new_sorted_list)
>> [1, 2, 3]
The numpy.sort()
function works like the sorted
function, which creates and returns a sorted array of the original list
import numpy as np
lst = [2, 1, 3]
new_sorted_list = np.sort(lst)
print(lst)
>> [2, 1, 3]
print(new_sorted_list)
>> [1 2 3]
import numpy as np
input_values = ["mango", "egg", "taco", "tea", "milkshake", "cheese"]
print("List of Strings")
print(f"\t(standard library) = {sorted(input_values)}")
print(f"\t(numpy) = {np.sort(input_values)}")
print("\nList of Numbers")
input_values = [3.14, -1.2, 0.2, 10, 100, 49]
print(f"\t(standard library) = {sorted(input_values)}")
print(f"\t(numpy) = {np.sort(input_values)}")
List of Strings
(standard library) = ['cheese', 'egg', 'mango', 'milkshake', 'taco', 'tea']
(numpy) = ['cheese' 'egg' 'mango' 'milkshake' 'taco' 'tea']
List of Numbers
(standard library) = [-1.2, 0.2, 3.14, 10, 49, 100]
(numpy) = [ -1.2 0.2 3.14 10. 49. 100. ]
Curated Resources#
To learn more about working with math in Python, we suggest: