Skip to article frontmatterSkip to article content

Calculate surface ocean heat content using CESM2 LENS data

Input Data Access

  • This notebook illustrates how to compute surface ocean heat content using potential temperature data from CESM2 Large Ensemble Dataset (https://www.cesm.ucar.edu/community-projects/lens2) hosted on NCAR’s GDEX.
  • This data is open access and is accessed via OSDF
# Imports
import intake
import numpy as np
import pandas as pd
import xarray as xr
import seaborn as sns
import re
import matplotlib.pyplot as plt
import fsspec.implementations.http as fshttp
from pelicanfs.core import PelicanFileSystem, PelicanMap, OSDFFileSystem 
import cf_units as cf
import dask 
from dask_jobqueue import PBSCluster
from dask.distributed import Client
from dask.distributed import performance_report
init_year0  = '1991'
init_year1  = '2020'
final_year0 = '2071'
final_year1 = '2100'
def to_daily(ds):
    year = ds.time.dt.year
    day = ds.time.dt.dayofyear

    # assign new coords
    ds = ds.assign_coords(year=("time", year.data), day=("time", day.data))

    # reshape the array to (..., "day", "year")
    return ds.set_index(time=("year", "day")).unstack("time")
lustre_scratch   = "/lustre/desc1/scratch/harshah"
# catalog_url = 'https://data.gdex.ucar.edu/d010092/catalogs/d010092-https-zarr.json' #Use this if you are working on NCAR's Casper
catalog_url  = 'https://stratus.gdex.ucar.edu/d010092/catalogs/d010092-osdf-zarr.json'

Create a PBS cluster

# Create a PBS cluster object
cluster = PBSCluster(
    job_name = 'dask-wk24-hpc',
    cores = 1,
    memory = '8GiB',
    processes = 1,
    local_directory = lustre_scratch+'/dask/spill',
    log_directory = lustre_scratch + '/dask/logs/',
    resource_spec = 'select=1:ncpus=1:mem=8GB',
    queue = 'casper',
    walltime = '5:00:00',
    #interface = 'ib0'
    interface = 'ext'
)
/glade/u/home/harshah/venvs/osdf/lib/python3.10/site-packages/distributed/node.py:187: UserWarning: Port 8787 is already in use.
Perhaps you already have a cluster running?
Hosting the HTTP server on port 34769 instead
  warnings.warn(
# Create the client to load the Dashboard
client = Client(cluster)
n_workers =5
cluster.scale(n_workers)
client.wait_for_workers(n_workers = n_workers)
cluster
Loading...

Load CESM LENS2 temperature data

cesm_cat = intake.open_esm_datastore(catalog_url)
cesm_cat
Loading...
# cesm_cat.df['variable'].values
cesm_temp = cesm_cat.search(variable ='TEMP', frequency ='monthly')
cesm_temp
Loading...
cesm_temp.df['path'].values
array(['https://osdf-data.gdex.ucar.edu/ncar-gdex/d010092/ocn/monthly/cesm2LE-historical-cmip6-TEMP.zarr', 'https://osdf-data.gdex.ucar.edu/ncar-gdex/d010092/ocn/monthly/cesm2LE-ssp370-cmip6-TEMP.zarr', 'https://osdf-data.gdex.ucar.edu/ncar-gdex/d010092/ocn/monthly/cesm2LE-ssp370-smbb-TEMP.zarr'], dtype=object)
dsets_cesm = cesm_temp.to_dataset_dict()
Loading...
cesm_temp.keys()
['ocn.historical.monthly.cmip6', 'ocn.ssp370.monthly.cmip6', 'ocn.ssp370.monthly.smbb']
historical       = dsets_cesm['ocn.historical.monthly.cmip6']
future_smbb      = dsets_cesm['ocn.ssp370.monthly.smbb']
future_cmip6     = dsets_cesm['ocn.ssp370.monthly.cmip6']
# %%time
# merge_ds_cmip6 = xr.concat([historical, future_cmip6], dim='time')
# merge_ds_cmip6 = merge_ds_cmip6.dropna(dim='member_id')
historical
Loading...
Change units
orig_units = cf.Unit(historical.z_t.attrs['units'])
orig_units
Unit('centimeters')
def change_units(ds, variable_str, variable_bounds_str, target_unit_str):
    orig_units = cf.Unit(ds[variable_str].attrs['units'])
    target_units = cf.Unit(target_unit_str)
    variable_in_new_units = xr.apply_ufunc(orig_units.convert, ds[variable_bounds_str], target_units, dask='parallelized', output_dtypes=[ds[variable_bounds_str].dtype])
    return variable_in_new_units
historical['z_t']
Loading...
depth_levels_in_m = change_units(historical, 'z_t', 'z_t', 'm')
hist_temp_in_degK = change_units(historical, 'TEMP', 'TEMP', 'degK')
fut_cmip6_temp_in_degK = change_units(future_cmip6, 'TEMP', 'TEMP', 'degK')
fut_smbb_temp_in_degK = change_units(future_smbb, 'TEMP', 'TEMP', 'degK')
#
hist_temp_in_degK  = hist_temp_in_degK.assign_coords(z_t=("z_t", depth_levels_in_m['z_t'].data))
hist_temp_in_degK["z_t"].attrs["units"] = "m"
hist_temp_in_degK
Loading...
depth_levels_in_m.isel(z_t=slice(0, -1))
Loading...
#Compute depth level deltas using z_t levels
depth_level_deltas = depth_levels_in_m.isel(z_t=slice(1, None)).values - depth_levels_in_m.isel(z_t=slice(0, -1)).values
# Optionally, if you want to keep it as an xarray DataArray, re-wrap the result
depth_level_deltas = xr.DataArray(depth_level_deltas, dims=["z_t"], coords={"z_t": depth_levels_in_m.z_t.isel(z_t=slice(0, -1))})
depth_level_deltas                                                                                        
Loading...

Compute Ocean Heat content for ocean surface

  • Ocean surface is considered to be the top 100m
  • The formula for this is:
    H=ρC0zT(z)dzH = \rho C \int_0^z T(z) dz

Where H is ocean heat content, the value we are trying to calculate,

ρ\rho is the density of sea water, 1026kg/m31026 kg/m^3 ,

CC is the specific heat of sea water, 3990J/(kgK)3990 J/(kg K) ,

zz is the depth limit of the calculation in meters,

and T(z)T(z) is the temperature at each depth in degrees Kelvin.

def calc_ocean_heat(delta_level, temperature):
    rho = 1026 #kg/m^3
    c_p = 3990 #J/(kg K)
    weighted_temperature = delta_level * temperature
    heat = weighted_temperature.sum(dim="z_t")*rho*c_p
    return heat
# Remember that the coordinate z_t still has values in cm
hist_temp_ocean_surface = hist_temp_in_degK.where(hist_temp_in_degK['z_t'] < 1e4,drop=True)
hist_temp_ocean_surface
Loading...
depth_level_deltas_surface = depth_level_deltas.where(depth_level_deltas['z_t'] <1e4, drop= True)
depth_level_deltas_surface
Loading...
hist_ocean_heat = calc_ocean_heat(depth_level_deltas_surface,hist_temp_ocean_surface)
hist_ocean_heat
Loading...

Plot Ocean Heat

%%time
# Jan, 1850 average over all memebers
# hist_ocean_avgheat = hist_ocean_heat.mean('member_id')
hist_ocean_avgheat = hist_ocean_heat.isel({'time':[0,-12]}).mean('member_id')
hist_ocean_avgheat
Loading...
%%time
hist_ocean_avgheat.isel(time=0).plot()
CPU times: user 4.43 s, sys: 335 ms, total: 4.77 s
Wall time: 53.4 s
<Figure size 640x480 with 2 Axes>
%%time
#Plot ocean heat for Jan 2014
hist_ocean_avgheat.isel(time=1).plot()
CPU times: user 3.86 s, sys: 147 ms, total: 4.01 s
Wall time: 37.2 s
<Figure size 640x480 with 2 Axes>

Has the surface ocean heat content increased with time for January ? (Due to Global Warming!)

hist_ocean_avgheat_ano = hist_ocean_avgheat.isel(time=1) - hist_ocean_avgheat.isel(time=0)
%%time
hist_ocean_avgheat_ano.plot()
CPU times: user 4.08 s, sys: 135 ms, total: 4.21 s
Wall time: 46.8 s
<Figure size 640x480 with 2 Axes>
cluster.close()