

Interactive 3D Visualization Techniques using VAPOR

Alan Norton NCAR/CISL Mini-Tutorial at TACC Summer Institute August 3, 2011

This work is funded in part by a Teragrid GIG award and an NSF XD Vis award

vapor@ucar.edu

Tutorial Overview

Purpose : Understand how to incorporate interactive 3D visualization into understanding of simulation results

Utilizing VAPOR (A visualization and analysis package developed at NCAR):

On completion: You will be able to:

- Convert data for VAPOR visualization
- Use multiresolution for interactive navigation in massive datasets.
- Edit transfer functions to identify important features in volume rendering of data
- Construct flow visualizations using streamlines and image-based flow.
- Place flow seed points based on features in data.

Supporting software and data

- Installed on Longhorn
 - VAPOR 2.0.2
 - Raw data at: /scratch/01380/anorton/8spot3dRaw
 - Sample Vapor datasets at /scratch/01380/anorton
- On the web:

Vapor website is <u>http://www.vapor.ucar.edu</u> where you can get:

- Installers
- Documentation and Tutorials
- Example data
- Image Gallery

VAPOR project overview

- VAPOR is the Visualization and Analysis Platform for Oceanic, atmospheric and solar Research
- **Goal**: Enable scientists to *interactively* analyze and visualize turbulence datasets resulting from numerical simulation
 - Initially supported uniformly gridded turbulence data
 - Expanded to support WRF-ARW and AMR data
- VAPOR is a collaboration between scientists and computer scientists:
 - A steering committee of scientists helps prioritize capabilities
 - Applying current visualization research to advance earth science research
- VAPOR is funded by NSF, relies on research efforts at NCAR, UC Davis, and Ohio State University
- VAPOR is free, open source, many resources available at <u>http://www.vapor.ucar.edu</u>

Tutorial Outline

- Data preparation process (command-line tools)
- Set up a visualization session in VAPOR of a hydrodynamics data set.
- Render an isosurface, navigate in the 3D scene
- *Volume rendering*: Identify and analyze vortices
 - Build a *Transfer Function* (color/opacity map)
- Flow integration
 - *Streamlines:* track fluid motion
- Derived variables: Use Python to derive new variables
 - Use derived variable visualization to position flow seeds
- Visualize a large dataset using VAPOR's *multi-resolution (wavelet)* representation
 - Navigate through an MHD dataset, identifying a roll-up of a current sheet
 - Position magnetic field lines associated with the current roll

vapor@ucar.edu

Preparing data for VAPOR visualization

Two command-line utilities needed before you visualize your data; this conversion has already been done for this tutorial

vdfcreate [options] vaporfile.vdf

- Constructs a metadata file that describes the dataset
- Options include:
 - -dimension XDIMxYDIMxZDIM (grid sizes)
 - -extents minx:miny:minz:maxx:maxy:maxz (user coordinate extents)
 - -vars3d a:b:c:d (names of 3d variables)
 - -numts N (number of time-steps)
 - -level L (number of multiresolution refinement levels)
- Writes a metadata file "vaporfile.vdf" describing the entire Vapor Data Collection to be created from the data
- raw2vdf [options] vaporfile.vdf rawfile
 - Converts one timestep of one variable into the VAPOR VDC

To save time, the data used in this tutorial has already been converted, available at /scratch/01380/anorton/

vapor@ucar.edu

Data preparation exercise

This exercise shows how to prepare to run VAPOR. Then we illustrate the use of vdfcreate and raw2vdf.

- vdfcreate will create a vapor metadata file (file of type .vdf) that describes your dataset.
- raw2vdf is used to convert raw data files into the VAPOR multiresolution data format.
- ncdf2vdf (not used here) can be used to convert NetCDF data files

Open a shell on Longhorn in your VNC session.

In that shell issue the command:

module add vapor

Data preparation exercise

To use vdfcreate and raw2vdf:

Change directory to your \$SCRATCH directory

Create a vapor metadata file 'vaporfile.vdf' with following command (all in one line):

vdfcreate -dimension 512x512x255 -extents 0:0:0:1:1:0.5

-vars3d ru:rv:rw:ro

-numts 30

-level 3

vapordata.vdf

Convert the raw files from the directory /scratch/01380/anorton/8spot3dRaw/ into your VAPOR data collection with the command:

raw2vdf -varname ru -ts 0 vapordata.vdf wrfout* /
scratch/01380/anorton/8spot3dRaw/ru.0.raw

Then reissue this command with *ru* replaced by *rv*, *rw*, and *ro*

vapor@ucar.edu

Set-up to visualize a dataset

- Use a command shell wherein 'module add vapor' was issued
- Launch VAPOR user interface with vglrun vaporgui
- Set up preferences from Edit menu:
 - 1. Edit→Edit User Preferences
 - 2. Set cache size to 10000 MB
 - 3. Check "When data is missing, use lower refinement if available"
 - 4. click "OK", save preferences to default location

VAPOR User Interfa	ce - [Visualizer No. 0]		
File Edit De Lure He Undo 1 prefer Redo Edit Visualizer Feature Edit User Preferences	ip inces CtrI+Z CtrI+Y is	0.0. 고田 🖥 십 💠	Align View 🗾 Int
Edit Python program	Set User Preferences QK 4 Help Restore Defaults General User Preference: Cache Size (Megabytes) Image: Specify graphics texture size	Session Defaults	
LOD 1:1 V Refi Renderer T	JPEG image quality (1-100) Automatically save session every: Automatically save session every: Show warning messages for missing data W 3 s missing, use less accurate data	thanges	

Load a vapor dataset (.vdf file)

- From Data menu:
 - Load a Dataset into Default Session:
- select 8spot3d.vdf from /scratch/01380/anorton/

VAPO	R User Inte	erface - [Vi	sualizer No.	0]						
💟 File Ed	li Data Captur	e Help			2					
*	Load a Dat	aset into Current	Session	Ctrl+D	sualizer No. O		1 4	₽ <	🔹 🔿 Align View	Interactive Refiner
<u>4</u>	Load a Dat	aset into <u>D</u> efault :	Bession	20030-1-	8		205			
Animation	Import WR	F-ARM output file	es into current ses so into dofault coor	sion	•					
	Merce a VI		es into default sess	siun			1			
Instance	Save the c	Choose th	e Metadata	File to	load into nev	v session		2 🛛		
Instance	Export to II	Look jn:	🗀 exampleData		•	🛏 🔁 🖆 📰	 •			
LOD	1:1 T Render	My Recent Documents Desktop My Documents My Computer	 Bspot3d Bspot3d_data Bspot3d-lowred april_data april_lowres_intic_lowred ot128_data ot128_lowred sphanmhd_data sphanmhd-low temp_data test_data VDC2data Sspot3d.vdf 	es_data data _data ta vres_data	V 8spot3d-lowres.w april.vdf april_lowres.vdf bar.vdf oti28.vdf oti28.vdf oti28.lowres.vdf save_april.vdf shanmhd.vdf temp.vdf test.vdf	df e.vdf s.vdf				
Sa Va	at:	My Network Places	File <u>n</u> ame:	8spot3d.vdf Vapor Metad	lata Files (*.vdf)	•	<u> </u>	<u>)</u> pen ancel		
		Transfer Function	n Editor							

Render an isosurface

You are now prepared to visualize the dataset.

- 1. Click Iso tab;
- 2. Check the "Instance:1" checkbox to enable rendering of an isosurface of ru.

Ways to Navigate in the 3D Scene

- To navigate: rotate, zoom, translate by dragging in the scene with left, right and middle mouse buttons respectively.
- Click "Home" icon (¹/₁) to return to starting viewpoint
- Click "Eye" icon (
 to see full domain
- Use Edit \rightarrow Undo if you make a mistake
- Use the VCR controls at the top left of the window to animate through time

Volume Visualization of vertical momentum (rw)

- Disable the isosurface (un-check the Instance: 1 checkbox)
- 2. Select DVR panel (direct volume rendering)
- 3. Select variable "rw" (vertical momentum)
- 4. Check "Instance:1" to enable volume rendering

Volume Visualization: Edit Transfer function (1)

- Click "Histo" to see histogram of data values of rw at current timestep
- Objective: Show the largest and smallest values of rw, hide the intermediate values
- To edit transparency:
 - Drag two opacity control points to position on left and right sides of histogram peak, move down to set to opacity 0
 - Make opacity=1 at largest and smallest values of rw.
- Control overall transparency with the vertical slider on the right

vapor@ucar.edu

Volume Visualization: Edit Transfer function (2)

- Add or delete control points with right mouse menu over transfer function editor.
- 2. To edit the color, select a color control point and then click on the desired value in the color selector.
 - Make the color blue to violet for upward motion (rw>0)
 - Make the color orange to red for downward motion (rw<0)
- Click the play button "▶" to animate the fluid motion

Using a transfer function to identify upward and downward fluid motion

Flow Visualization Overview

- Vapor can display streamlines (*steady* flow, constant time) and pathlines (*unsteady* flow, showing particle paths over time)
- Flow can be illustrated in cross-section using the *flow image* capability in the Probe tab.
- Streamlines and path lines are established by *seed points* (starting points for flow integration)
- Seed points can be:
 - *Random*: Randomly placed within a range of x, y, and z values, or
 - *Nonrandom*: Evenly spaced in x, y, and z dimensions, or
 - Seed List: Explicitly placed in the scene
- VAPOR *Probe* tool (**>**) can be used to position flow seed points.

NCAR

vapor@ucar.edu

Position seed points with the rake

- Enable the DVR again (check Instance:1 in DVR panel)
 - View it from the bottom (home viewpoint). Note that there appears to be a vortex in the lower-left quarter of the volume. We shall concentrate the streamlines in that region to visualize the vortex.
 - Click on rake button () at top left, above the tabs . Note that the red rake-box has red cube-handles on each face.

Isolating a vortex with the rake

- We will position the rake in the region around the apparent vortex:
- Set "Steady flow length" to 0.1 (shorten the streamlines)
- Grab the red handles of the rake box with the right mouse, drag them inward to enclose the vortex
- Rotate the scene so that you can shorten the rake in its vertical dimension.
- Color flow lines according to "Position along flow"
- Zoom in closer to the rake

vapor@ucar.edu

Use Python to derive a new variable

- We shall create a derived variable, "vortmag" representing the magnitude of vorticity.
- The vorticity magnitude provides another way of identifying a vortex in the data.
- From Edit menu, select "Edit Python program defining a new variable". This will launch the Python editor.

Use Python to derive a new variable

- In the Python Editor, check ru, rv, rw, and ro as Input 3D Variables.
- Click "Add 3D Variable" and specify "vortmag"
- Type in the following 2-line python script:
 vort = curl_findiff(ru/ro, rv/ro, rw/ro)
 vortmag = mag3d(vort[0],vort[1],vort[2])
- Click "Test" and make sure there are no error messages
- Click "Apply"

Position the Probe in the middle of the rake

- 1. Click on the Region tab.
- 2. In the Region tab, click "Copy Rake to Region"
- 3. Then click "Copy Region to Probe"
- 4. Then click "Maximize Region in Full Domain", returning the region to the original (full) extents.
- 5. Click on the Probe icon (\nearrow) to show the Probe location

Use the Probe to visualize vorticity magnitude

- 1. In the Probe tab, check the checkbox "planar probe" to make it just a 2D probe.
- 2. Check the "Instance:1" checkbox to enable the probe.
- 3. Set the probe refinement level to 2.

Visualize vorticity magnitude (2)

- 1. Scroll to the bottom of the Probe tab, select the variable "vortmag"
- 2. Below the transfer function, set the TF bounds to 0 and 50.
- Click "Fit to View" and "Histo" to get a histogram of values of vortmag.
- 4. Click in the probe image, note how the <u>2D probe cursor</u> controls the <u>3D cursor</u> in the scene

Using the probe to specify flow seed points (1)

- 1. Click on the Flow tab
- Set the flow tab with the same settings as before (smoothness = 300, color=position along flow)
- 3. Set Typical Steady Flow Length = 3
- 4. Set refinement level to 2
- 5. On the flow tab, under "flow seeding parameters", select "List of Seeds" instead of "Random Rake".
- 6. Check "Instance:1" to enable the flow. Ignore the warning messages (there are no seeds in the list).

Using the probe to specify flow seed points (2)

- Click on the DVR tab. Disable the DVR.
- Click on the Probe tab
- Below the Cross-section view, click on "Attach point to flow seed"
- Click cursor in image, see various resulting streamlines
- Click "Add point to Flow. Seeds" for several points
 near the vortex center
 (where the color is purple)

A large, interesting MHD dataset

- Based on results of P. Mininni, A. Pouquet, D.
 Montgomery: MHD simulation at high Reynolds Number.
 Found that current sheets can evolve to tubular structures ("current roll").
- Grid size 1536³. Time steps infrequently saved. Sample data for one time step (105) is on Longhorn at /scratch/ 01380/anorton/rnd1536.vdf
- Interesting structures are hard to find, requires interactive browsing of large data volume
- VAPOR multi-resolution approach facilitates browsing in large data, identifying novel structures.

Set up for volume visualization of current magnitude

vapor@uca

- From your vnc window on Longhorn, issue:
 - module add vapor
 - vglrun vaporgui
- Edit → Edit Visualizer
 Features to launch visualizer features panel:
 - check "Show X,Y,Z (R,G,B)
 Arrows"; then click "OK"
- Data → Load Data then load scratch/01380/anorton/
 rnd1536.vdf

V VA	POR User Interface - [Visualizer No. 0]
🏹 File	Edit Data Capture Help
J **	Undo change mode probe-set to navigate CtrI+Z Redo CtrI+Y
Animatia	
animatic	
	Edit Python program defining a new variable
Inst	Edit Python Program defining existing variable
Insta	Edit Python startup script
	Visualizer Feature Selection
	<u>ل</u>
	Following apply to this Visualizer: Visualizer No. 0
	Visualizer name: Visualizer No. 0
	Show X,Y,Z (R,G,B) Arrows
	X,Y,Z arrow location relative to current region:
	0 0 0
	F Enable axis annotation
	Lower-left coords: 0.1 0.1
	Text size: 10 Text color: Select
	T Display Terrain Surface Color: Select
redu	I DOD
r.cuu	APOR
	Visualization & Analysis Plarform

Set up for volume visualization of current magnitude

Edit transfer function of current magnitude

- Setup transfer function for jmag, to clearly display the current sheets:
 - 1. Set TF Domain Bounds to 0, 100
 - 2. Click "Histo" and "Fit to View" buttons
 - Drag 2nd opacity control point down to the bottom (opacity 0) at data value about 15
 - Drag 3rd opacity control point upward (opacity 1) at data value ~50
 - 5. Slide opacity slider to about 1/5 of the way up, to make current sheets fairly translucent.

Focus on small subregion to allow interactive visualization at full resolution

- Enable region mode (
 - Note the complex structure at bottom (large z, small y)
- Grab region handles to make a box of diameter ~ 0.1, centered near x=0.25, y=0.1, z=0.9
 - Or just type these values into the Region panel

Focus on small subregion to allow interactive visualization at full resolution

- Click on magnifying glass icon (<) to center view on new region
- Set refinement level to 5 to see data at full resolution
- Rotate around to see the current roll

Set data probe to view crosssection of current roll

- Enable Probe mode (click /)
- In Probe tab, click "Axis Align" and select "+Y" to make probe orthogonal to current roll
- Click "Fit to Region", then slide probe down to middle of region (Y = 0.1)
- Set Probe refinement level 5
- Scroll down in Probe panel,
 Set "Mapped Variable" = jmag
- Set TF domain bounds 0, 100;
 then click "Histo" and "Fit to View" vapor@ucar.edu

Current roll in probe

CISL

Set up flow to observe magnetic field lines

- 1. Click on Flow tab
- 2. Set variables bx, by, bz
- 3. Set smoothness 300, length = 0.2
- 4. Set diameter 4
- 5. Set refinement level 5
- 6. Set color white
- 7. Set "List of Seeds"
- 8. Enable (check "Instance:1" at top of flow tab), ignore error messages

Insert magnetic field lines near current roll

vapor@ucar.edu

- Click on Probe tab
- Click "Attach Point to flow Seed"
- Place cursor in core of current roll, click "Add Point to Flow Seeds"
 - Note that field lines follow the core of the roll
- Insert seeds on either side of current sheet. Note change of magnetic field as it crosses current sheet.

Visualization & Analysis Platform

Magnetic field lines placed nearby current roll

Other useful capabilities of VAPOR

Some features we haven't shown you

(more at <u>http://www.vapor.ucar.edu/</u>):

- Visualization of WRF output
- Support for compressed data
- Calculate derived variables in IDL or NCL
- Visualization of 2D variables
 - 2-dimensional variables can be visualized in the scene alongside the 3D variables, and can be applied as terrain images
- Insert images into scene
 - Can be applied to terrain surface, or geo-referenced
- More flow visualization
 - Image-based flow, to animate flow motion in a surface
 - Particle traces can be visualized and animated.
 - Field line advection can be used to track field lines moving over time
- Animation capture
 - A sequence of images can be captured to jpeg files, for making a movie

vapor@ucar.edu

VAPOR plans

We are preparing a new release for later this year Some features under consideration:

- 3D geometric model rendering
- Wind barbs
- Improved Python support
- Extensibility support: users can add their own renderers.
- Inclusion of standard earth-based geo-referenced images.
- Improved usability of probe and flow panels
- Enhanced Web-based documentation

Where to go from here

To visualize the output of your simulation:

- Install VAPOR on your (Windows/Linux/Mac) computer (Instructions at <u>http://www.vapor.ucar.edu/</u>)
- Convert your data to VAPOR using command-line utilities
- Additional tutorials and user guides are available at http://www.vapor.ucar.edu/
- VAPOR WRF tutorial is at <u>http://vis.ucar.edu/~alan/wrf2011/tutorial</u>
- E-mail <u>vapor@ucar.edu</u> with questions, suggestions, bugs.
- Let us know if you have additional needs That's how we select and prioritize new features!

VAPOR Availability

- Version 2.0.2 software is available
- Runs on Linux, Windows, Mac
- System requirements:
 - a modern (nVidia or ATI) graphics card (available for about \$200)
 - ~ 1 GB of memory
- Supported in NCAR visualization/analysis systems
- Software dependencies:
 - IDL[®] <u>http://www.ittvis.com/</u> (only for interactive analysis)
- Contact: <u>vapor@ucar.edu</u>
- Executables, documentation available (free!) at http://www.vapor.ucar.edu/

Acknowledgements

• Steering Committee

- Nic Brummell UCSC
- Yuhong Fan NCAR, HAO
- Aimé Fournier NCAR, IMAGe
- Pablo Mininni, NCAR, IMAGe
- Aake Nordlund, University of Copenhagen
- Helene Politano Observatoire de la Cote d'Azur
- Yannick Ponty Observatoire de la Cote d'Azur
- Annick Pouquet NCAR, ESSL
- Mark Rast CU
- Duane Rosenberg NCAR, IMAGe
- Matthias Rempel NCAR, HAO
- Geoff Vasil, CU
- Leigh Orf, U Central Mich.
- Systems Support
 - Joey Mendoza, NCAR, CISL

- WRF consultation
 - Wei Wang NCAR, MMM
 - Cindy Bruyere –NCAR, MMM
 - Yongsheng Chen-NCAR,MMM
 - Thara Prabhakaran-U. of Ga.
 - Wei Huang NCAR, CISL
 - Minsu Joh KISTI
- Design and development
 - John Clyne NCAR/CISL
 - Alan Norton NCAR/CISL
 - Dan LaGreca NCAR/CISL
 - Pam Gillman NCAR/CISL
 - Kendall Southwick NCAR/CISL
 - Markus Stobbs NCAR, CISL
 - Kenny Gruchalla NREL
 - Victor Snyder CSM
- Research Collaborators
 - Kwan-Liu Ma, U.C. Davis
 - Hiroshi Akiba, U.C. Davis
 - Han-Wei Shen, OSU
 - Liya Li, OSU

vapor@ucar.edu