
	

	

	
	

	

VAPOR	Product	Roadmap	
	

Visualization	and	Analysis	Software	Team	
October	2017	

	 	



	

	

	

VAPOR	
	

Introduction	
	
In	2015	the	VAPOR	team	began	a	major	refactoring	of	the	VAPOR	codebase	aimed	at	
addressing	a	myriad	of	limitations	in	the	original	design,	while	simultaneously	supporting	and	
developing	the	VAPOR	version	2.x	code	stream.	The	refactoring	effort,	heretofore	referred	to	as	
"VAPOR3",	is	still	underway	and	expected	to	be	completed	in	2018.	The	most	significant	goals	
of	VAPOR3	are:	
	
Extensible	architecture:	While	VAPOR2	was	largely	a	monolithic	collection	of	code,	the	aim	of	
VAPOR3	is	a	clean	separation	of	well-defined	components	and	APIs	that	follow	modern	
software	engineering	best	practices,	and	facilitate	extensibility	by	VAPOR	team	members	as	
well	as	community	contributors	in	areas	of	development	such	as:	

• data	readers	for	new	file	formats,	model	outputs,	etc.;	
• data	operators	(e.g.	visualizers,	computational	modules,	etc.);	and	
• alternate	user	interfaces	(e.g.	scripting,	web	based).	

	
Flexible	data	model:	VAPOR2's	support	for	computational	meshes	was	limited	to	regular	grids	
only,	and	had	no	formal	support	for	coordinate	systems	or	units	of	measure.	The	VAPOR3	data	
model	takes	inspiration	from	the	widely	used	Climate	Forecast	(CF)	conventions,	and	will	be	
capable	of	supporting	a	significant	subset	of	the	defined	CF	mesh	types;	horizontal,	vertical,	and	
temporal	coordinate	systems;	and	units	of	measure.	
	
Improved	usability:	New	functionality	had	been	added	to	VAPOR2	in	a	somewhat	ad	hoc	
fashion	resulting	in	a	GUI	that	is	often	overloaded	with	features	and	inconsistent	in	its	behavior	
and	operation.	The	result	is	that	the	GUI	is	often	difficult	to	use,	particularly	for	new	users.	The	
VAPOR3	GUI	will	be	restructured	to	follow	best	practices	for	user	interface	design	such	as	
separating	commonly	used	and	advanced	features,	and	striving	for	consistency	throughout	the	
application.		

Development	plans	
	
The	most	significant	areas	of	new	development	are	discussed	below.	Many	of	these	areas	are	
enabled	by,	or	closely	tied	to,	the	VAPOR3	refactoring	effort.	
	
VAPOR	Data	Collection	(VDC)	
The	VDC	is	the	cornerstone	of	VAPOR's	large	data	handling	capability,	providing	the	ability	to	
compress	and/or	progressively	access	gridded	data.	VAPOR3	will	offer	version	3	of	the	VDC.	
Version	3	of	the	VDC	is	inspired	by	the	CF	conventions,	and	is	intended	to	allow	representation	



	

	

of	most	CF	compliant	data.	Much	of	the	development	work	on	version	3	of	the	VDC	is	now	
complete,	and	the	new	file	format	is	capable	of	storing	the	same	grids	as	VDC2,	but	also	
provides	formal	support	for	horizontal	and	vertical	coordinates	as	defined	in	the	CF	
conventions,	as	well	as	units	of	measure	as	supported	by	Unidata's	UDUNITS2	package.	Work	is	
now	underway	to	add	support	for	unstructured	grids	via	the	UGRID	conventions.	Future	work	
on	the	VDC	includes:	

• Adding	support	for	alternate	data	compression	schemes,	and	advanced	wavelet	
encoders	(e.g.	SPIHT	and	SPECK).		

• Adding	progressive	access	representation	scheme(s)	for	unstructured	data	
• Providing	an	MPI-compatible,	parallel	API	with	C	and	Fortran	bindings,	thus	enabling	

numerical	models	to	write	(or	read)	data	directly	to	(or	from)	the	VDC	format.	
• Developing	VDC	readers/writers	for	other	data	analysis	applications.	E.g.	NCL,	VisIt,	and	

ParaView.	
	
Scripting	interface	
Though	VAPOR	is	primarily	an	interactive	application	for	exploratory	data	analysis,	a	frequent	
request	from	the	VAPOR	user	community	is	the	ability	to	control	their	analysis	operations	via	a	
scripting	language	that	would	facilitate	batch	and	repeated	operations.	Though	a	final	decision	
has	not	been	made,	at	present	Python	is	the	most	likely	candidate	for	such	an	interface.	
	
OpenGL	4.0	support	
All	rendering	in	VAPOR	is	performed	with	OpenGL.	Presently	VAPOR	uses	the	venerable	version	
2.x	OpenGL	API,	which	has	reached	EOL.	Migrating	to	a	more	recent	version	of	this	graphics	
library	will	be	necessary	in	the	future.	
	
Performance	optimization	
A	number	of	components	of	the	VAPOR	tool	suite	are	computationally	intensive	and	could	
benefit	from	optimization	and	parallelization.	VAPOR's	wavelet	transform	and	flow	integration	
modules,	for	example,	could	readily	take	advantage	of	current/emerging	many-core	
architectures.	
	
Distributed	memory	parallel	backend	
Thus	far	VAPOR	has	been	able	to	satisfactorily	support	large	data	sets	by	relying	on	the	VDC's	
progressive	data	access	capability.	The	long	term	viability	of	this	approach	to	increasingly	large	
data	sets	is	not	known,	and	at	some	point	it	may	be	necessary	to	refactor	VAPOR's	backend	
data	operators	and	visualizers	to	support	distributed	memory	parallelism.		
	
Unstructured	grid	rendering	
Supporting	unstructured	grids	(e.g.	MPAS,	ICON,	HOMME)	will	require	substantial	changes	to	at	
least	two	of	VAPOR's	current	premiere	visualization	algorithms:	isosurface	display	and	direct	
volume	rendering.	
	
Expanded	python	support	



	

	

VAPOR	currently	relies	on	Python,	and	in	particular	the	NumPy,	matplotlib,	SciPy	modules,	for	
performing	numerous	tasks	such	as	deriving	new	quantities,	basic	2D	plotting,	and	quantitative	
analysis.	However,	the	interaction	with	the	Python	interpreter	is	highly	limited.	We	plan	for	a	
much	tighter	coupling	between	Python	and	VAPOR	in	the	future,	allowing	users	to	more	
seamlessly	interact	between	the	two.	Such	expanded	capability	would	open	the	door	for	
VAPOR	to	invoke	NCL	Python	calculation	and	plotting	modules,	and	vice	versa,	for	example.	
	
In	situ	visualization	
There	is	a	much	interest	in	the	HPC	communities	in	in	situ	visualization.	Though	the	viability	of	
this	approach	is	uncertain	due	to	its	numerous	limitations	(e.g.	supporting	exploratory	science,	
scheduling	challenges,	etc.),	and	the	lack	of	maturity	of	the	supporting	technologies,	it	is	
nevertheless	a	direction	that	we	must	track	and	ultimately	may	need	to	support.	
	 	



	

	

	
	

	 VAPOR3	Development	Roadmap	
October	2017	

	
Capability	 2017	

V3.0	
(beta)	

2018	
V3.0	

2018	
V3.1	

2019	
V3.2	

Future	
V3.x	

VAPOR	Version	2	enter	EOL	 	 	 ü	 	 	
Direct	Volume	Rendering	(regular	grids)*	 	 ü	 	 	 	
Isosurfaces	(regular	grids)*	 	 ü	 	 	 	
Statistics*	 ü	 	 	 	 	
Line	plotting*	 ü	 	 	 	 	
Contour	lines*	 ü	 	 	 	 	
2D	data*	 ü	 	 	 	 	
Time	animation*	 ü	 	 	 	 	
Geo-referenced	images*	 ü	 	 	 	 	
Unstructured	grids	(2D)	 ü	 	 	 	 	
Multi-dataset	visualization	 ü	 	 	 	 	
VDC	importer	for	NCL	 	 	 ü	 	 	
Direct	Volume	Rendering	(unstructured	grids)	 	 	 ü	 	 	
Isosurfaces	(unstructured	grids)	 	 	 ü	 	 	
Flow	visualization*	 	 	 ü	 	 	
Key	frame	animation*	 	 	 ü	 	 	
Python	calculation	engine*	 	 	 	 ü	 	
VDC	support	for	general	unstructured	grids	via	
UGRIDs	

	 	 	 ü	 	

OpenGL	4.x	support	 	 	 	 ü	 	
Python	scripting	interface	 	 	 	 ü	 	
Accelerator	support	 	 	 	 ü	 	
Parallel	(MPI)	VDC	API	 	 	 	 ü	 	
Parallel	(MPI)	rendering	backend	 	 	 	 	 ü	
Progressive	data	access	/	compression	(unstructured	
grids)	

	 	 	 	 ü	

Advanced	wavelet	encoders	and/or	alternate	
compressors	

	 	 	 	 ü	

Web	interface	 	 	 	 	 ü	
Expanded	python	support	 	 	 	 	 ü	
In	situ	visualization	 	 	 	 	 ü	

Anticipated	release	schedule	for	major	new	VAPOR	components.	Starred	(*)	items	are	those	that	
already	exist	in	VAPOR2	and	must	be	migrated	to	the	VAPOR3	architecture.	
	


