

An Overview of VAPOR Data
Collections

July, 2006

Version 1.0.3

National Center for Atmospheric Research

Vapor Data Collection
This document provides an introduction to VAPOR’s data storage model, the VAPOR
Data Collection, and presents information needed for preparing data for visualization and
analysis in the VAPOR environment.

Overview
The VAPOR data analysis environment targets data sets that are time-varying,
multivariate, and possessing very high spatial resolutions. Aggregate data sets generated
from a single experiment that are terabytes in size are not uncommon. To accommodate
the unique needs of these large data sets, VAPoR defines its own mechanism for storing
field data and its associated attributes (metadata). In the VAPoR environment, a
collection of related data, typically having been produced from a single numerical
simulation, is known as a VAPoR Data Collection (VDC).

A VDC is composed of two components: metadata and field data. Metadata are data that
describe field data. Examples of metadata include the grid type, spatial resolution, name
of the field variables, number of time steps, and possibly user-defined attributes. Field
data are the numerical outputs produced by the simulation. Examples include:
components of a velocity field, a temperature field, etc.

The VDC model is different from more traditional scientific data representations,
such as netCDF and hdf, in two important ways:

1. Field data are stored as wavelet transformed coefficients. I.e. field data undergo a
user-defined number (and type) of wavelet transforms before they are written to a
file. Inverse wavelet transforms may be easily and efficiently applied to the stored
wavelet coefficients, and the original field data reconstructed. Furthermore, the
data need not be reconstructed at its original grid resolution. The user may elect to
reconstruct a coarsened approximation of the data to reduce memory
requirements, processing time, etc.

2. VDC data (metadata and field data) are not stored in a single file as is commonly

done with other scientific data formats. Instead, metadata, individual field data
time steps, variables, and wavelet coefficients are all stored in separate files.
Distributing the pieces in this manner is essential for effectively managing
terabyte sized data collections.

An Overview of VAPOR Data Collections 2

Reading and Writing Vapor Data Collections
VAPOR provides a collection of tools for importing simulation field data into a VDC, or
exporting data from a VDC to external applications. Presently, importing and exporting
operations may be performed via command line utilities, extensions to RSI’s IDL, or
through a C++ library. This document gives an overview of the available command line
utilities and IDL language extensions.

Before describing the import/export operators, a basic understanding of the VDC file
structure is required. As discussed above, the components of a VDC are distributed
across different disk files. All metadata for a VDC are stored in a single .vdf file. A .vdf
file is encoded in XML and may easily be browsed, or even edited, with widely found
XML editors and browsers (most web browsers will read and display XML).
Field data are stored in netCDF data files as coefficients output from a user-directed
number of wavelet transformation passes. Each .netCDF file contains the wavelet
coefficients associated with a single wavelet transformation pass applied to a single field
variable, at a single time step. For example, applying two transformation passes to the X
component of a velocity vector, vx, from the first time step in a data collection would
result in the generation of three netCDF files with the extensions .nc0, .nc1, and .nc2.
The first file, .nc0, contains the wavelet coefficients necessary to reconstruct vx at its
coarsest approximation level (1/4 the original resolution along each coordinate axes). The
.nc1 file provides the wavelet coefficients necessary to reconstruct the vx variable at ½
the original resolution, etc. By splitting the wavelet coefficients into separate files, the
user is afforded the opportunity to maintain an incomplete, but still valid VDC.

Thus a VDC is considered valid even if finer approximation levels are missing. In the
above example, the user may choose to store the .nc2 coefficients off line in order to save
space. Furthermore, a VDC is valid even if entire time steps or variables are not present
on disk. The goal of supporting incomplete VDCs is to provide the user the flexibility
needed to manage very large data sets. Hence a minimal valid VDC consists only of a
metadata .vdf file, and no field data.

The process of creating a VDC is straightforward:

1. Generate a .vdf file defining the number and name of variables, number of time
steps, and resolution of each volume in a data set, as well as the number of
wavelet transformations to apply.

2. Translate raw data volumes into wavelet-transformed coefficients.

The first step is performed once for a VDC. The number of variables, time steps and the
resolution are all determined by the data itself. The number of wavelet transforms is a
user option that determines how many, and what resolution, field data approximations
will be available for subsequently transformed data. Specifying a value of zero implies no
transformations and the data will only be available at full resolution. A value of one
implies a single transformation; the data will be available at full and half resolution. And

An Overview of VAPOR Data Collections 3

so on. Step two may be repeatedly performed as needed, and when needed, until the
VDC is fully populated as defined by the associated .vdf file.

The sections that follow describe the various tools available for importing and exporting
raw data to/from a VDC.

Command line utilities
Three command line utilities are currently available for writing and reading a VDC:

Command Description
Vdfcreate Generates a .vdf metadata file
Raw2vdf Forward transforms a file containing a block of floats and stores the

results in a VDC
Vdf2raw Inverse transforms a field variable found in a VDC and stores the

results on disk as a block of floats.

A brief overview of each command is presented below. For a complete description of all
of the command line options supported by a command, the command may be invoked
with the ‘-help’ option. For example:

 vdfcreate -help

Note: Prior to running any VAPOR commands you must configure your user
environment by sourcing one of the VAPOR setup scripts: vapor-setup.csh or vapor-
setup.sh. For C-shell or its derivatives use:

source vapor-setup.csh

For the Bourne shell or its derivatives use:

. vapor-setup.sh

vdfcreate
The vdfcreate command line utility generates a .vdf file defining a VDC. The user may
specify a limited number of metadata attributes including: the volume dimension, number
of time steps, number of forward wavelet transforms, and the variable names. The
invocation:

vdfcreate –dimension 512x512x512 –numts 100 \
–level 3 –varnames vx:vy:vz foo.vdf

would produce a .vdf file named foo.vdf. This file would describe a VDC containing 100
time steps, starting from 0 and running through 99; three field variables, vx, vy and vz;

An Overview of VAPOR Data Collections 4

each volume would have a spatial resolution of 5123; and three wavelet transforms would
be applied. Thus the data will be accessible at the following resolutions: 5123, 2563, 1283,
and 643.

raw2vdf
The raw2vdf command reads a volume from disk stored as a block of floats (a
contiguous, 3D array of unformatted, 32bit, binary floating point values with no header or
trailer information), transforms the data into wavelet space, and stores it in a VDC.
Assuming we used the .vdf file created in the previous example, the command:

raw2vdf -ts 0 –varname vx foo.vdf rawvx.float

would transform the volume stored in the file rawvx.float and write it into the VDC
associated with the foo.vdf metafile. The time step and variable would be 0 and vx,
respectively. The volume contained in rawvx.float must have a resolution of 5123 as
defined in the .vdf file. Furthermore, the volume will undergo three wavelet
transformations, resulting in a coarsest resolution of 643.

Note: See the Appendix for a discussion on converting data output from a FORTRAN
program into a VDC.

vdf2raw
This command extracts a variable (3D data volume) from a VDC, applies an inverse
wavelet transform, and stores the results in a file. Following our previous example, the
command:

vdf2raw –ts 0 –varname vx –level 2 foo.vdf \
rawvx256.float

would extract a 2563 version of the vx variable, at time step 0, and store the inverse
wavelet transformed results as a block of floats in the file rawvx256.float.

An Overview of VAPOR Data Collections 5

IDL Language Extensions
Extensions to the IDL language in the form of new IDL system routines provide a
powerful mechanism for interacting with VDCs, offering data interaction capabilities that
go far beyond what is currently possible with the suite of command line utilities
described above. Using IDL language extensions a user may not only define a .vdf file, as
with the command line utilities, but may also programmatically edit an existing file, or
read the contents of a .vdf file into an IDL session. Furthermore, the IDL language
extensions expose .vdf metadata attributes that are not accessible via the command line
utilities. For example, with the IDL routines a user may set or get user-defined floating,
integer, or character text arrays associated with a time step, a variable within a time step,
or that are global to the entire VDC. These user-defined attributes have no meaning to
VAPOR. Their interpretation and application is entirely up to the user.

In addition to operating on .vdf files, the IDL routines also provide a number of
mechanisms for importing/exporting data to/from a VDC. Field data imported from a
VDC into IDL are stored as a 3D IDL array. Similarly, IDL export routines export data
contained in a 3D IDL array.

Note: Prior to running any VAPOR IDL commands you must configure your user
environment by sourcing one of the VAPOR setup scripts: vapor-setup.csh or vapor-
setup.sh. For C-shell or its derivatives use:

source vapor-setup.csh

For the Bourne shell or its derivatives use:

. vapor-setup.sh

A simple IDL session
The following step-by-step instructions demonstrate a simple IDL session using one of
the IDL example scripts provided by VAPOR. It assumes that the user’s VAPOR
configuration environment has been properly established as per above.

1. Change working directories to the VAPOR IDL examples directory:

% cd $VAPOR_HOME/examples/idl

2. Invoke the IDL interpreter using whatever IDL startup command is appropriate

for your environment. For example, simply typing idl will work in many
environments:

% idl

An Overview of VAPOR Data Collections 6

3. From the IDL command prompt, run the example program named

WriteVDF.pro:

IDL> .run WriteVDF

4. Exit the IDL interpreter:

IDL> exit

You should now have a VAPOR data collection in the /tmp directory named test.vdf.
This data set may be explored using VAPOR’s interactive data browser, vaporgui.

An Overview of VAPOR Data Collections 7

IDL Example Scripts
A number of rudimentary IDL example scripts are presented below.

Creating a .vdf file – example 1
IDL system routines for operating on .vdf files are all prefixed with a vdf_, for example,
vdf_create. The following example shows how to create a simple .vdf file that will
contain only a single time step, and a single variable.

;
; Dimensions of the data volumes - all volumes
; in a dataset must be of the same dimension
;
dim = [512,512,512]

;
; Number of forward wavelet transforms to apply to
; data stored in the data set. A value of 0 indicates
; that the data should not be transformed. A value of 1
; implies a single transform. The resulting
; data will be accessible at the original resolution
; and 1/8th resolution(half resolution in each dimension).
; A value of two implies two coarsenings, and so on.
;
num_levels = 2

;
; Create a new VDF metadata object of the
; indicated dimension and transform level. vdf_create()
; returns a handle, named mfd in this example,
; for future operations on the metadata object.
;
mfd = vdf_create(dim,num_levels)

;
; Set the maximum number of timesteps in the data set.
; Note, a valid data set may contain less than the
; maximum number of time steps, but not more
;
timesteps = 1
vdf_setnumtimesteps, mfd,timesteps

;
; Set the names of the variables the data set will
; contain. In this case, only a single
; will be present, "vx”.

An Overview of VAPOR Data Collections 8

;
varnames = [vx]
vdf_setvarnames, mfd, varnames

;
; Store the metadata object in a file for subsequent use
;
vdffile = '/tmp/test.vdf'
vdf_write, mfd, vdffile

;
; Destroy the metadata object. We're done with it.
; Note. Neglecting to destroy the object once you
; are done with it can have unpredictable results.
vdf_destroy, mfd
end

An Overview of VAPOR Data Collections 9

Creating a .vdf file – example 2
This example differs slightingly from the first. We’ll add more time steps, variables, and
set some other metadata attributes.

dim = [512,512,512]
num_levels = 2

mfd = vdf_create(dim,num_levels)

;
; This VDC will contain 100 time steps
;
timesteps = 100
vdf_setnumtimesteps, mfd,timesteps

;
; Set the names of the variables the data set will
; contain. In this case, three variables
; will be present, "vx", “vy”, and “vz”
;
varnames = ['vx',vy,vz]
vdf_setvarnames, mfd, varnames

;
; Set the extents of the volume in user-defined
; physical coordinates. Note, as the aspect ratio of
; the user-defined coordinates do not match that of
; the volume resolution (512x512x512), the volume
; will be stretched when rendered. I.e. the spacing
; between the Z coordinate samples is defined to
; be twice that of X or Y.
;
extents = [0.0,0.0,0.0,100.0, 100.0, 200.0]
vdf_setextents, mfd, extents

;
; Set a global comment
;
vdf_setcomment, mfd, ‘This is my xxx data’

;
; Set user defined, floating point attribute
; data. In this case, montonically increasing floating
; point numbers from 0 to 99.0.
;
; We first define a name for the attribute, “MyMetadata”.

An Overview of VAPOR Data Collections 10

;
attribute_name = ‘MyMetadata’
f = findgen(100)
Vdf_setdbl,mfd,attribute_name, f

vdffile = '/tmp/test.vdf'
vdf_write, mfd, vdffile

vdf_destroy, mfd
end

An Overview of VAPOR Data Collections 11

Writing field data
Once a .vdf file has been created using either the IDL commands discussed above, or the
command line utilities discussed previously, the VDC may be populated with data. IDL
routines that operate on field data are prefixed with vdc_.

Note: See the Appendix for a discussion on converting data output from a FORTRAN
program into a VDC.

;
; Create a "buffered write" data transformation
; object. The data transformation object will permit
; us to write (transform) raw data into the data set.
; The metadata for the data volumes is obtained
; from the metadata file we created previously. I.e.
; 'vdffile' must contain the path to a previously
; created .vdf file. The vdc_bufwritecreate routine
; returns a handle, 'dfd', for subsequent operations.
;
dfd = vdc_bufwritecreate(vdffile)

; Get the data volume that we wish to store.
;
vx = my_data_generation_function()

;
; Prepare the data set for writing. We need to identify
; the time step and the name of the variable that
; we wish to store. In this case, the first time step,
; zero, and the variable named ‘vx’
;
vdc_openvarwrite, dfd, 0, ‘vx’

;
; Write (transform) the volume to the data set one
; slice at a time
;
for z = 0, dim[2]-1 do begin
 vdc_bufwriteslice, dfd, vx[*,*,z]
endfor

;

An Overview of VAPOR Data Collections 12

; Close the currently opened variable/time-step. We're
; done writing to it
;
vdc_closevar, dfd

;
; Destroy the "buffered write" data transformation
; object. We're done with it.
;
vdc_bufwritedestroy, dfd

end

An Overview of VAPOR Data Collections 13

Reading data – example 1
Reading data from a VDC is similar to writing:

; This example shows how to read a single data volume
; from a VDC data collection using a "Buffered Read"
; object. The entire spatial domain of the volume
; is retrieved (as opposed to fetching a spatial
; subregion). However, the volume is extracted at
; its coarsest spatial resolution.
;

;
; Number of forward wavelet transforms.
; A value of 0 indicates that the data should be
; read at coarsest) resolution. A value of 1
; implies a the next coarsest, etc. A value of -1
; implies the finest (native) data resolution.
;
num_levels = 0

vdffile = '/tmp/test.vdf'

;
; Create a "Buffered Read" object to read the data,
; passing the path to the metadata file created in;
; the previous example.
;
dfd = vdc_bufreadcreate(vdffile)

;
; Determine the dimensions of the volume at
; the given transformation level.
;
; Note. vdc_getdim() correctly handles dimension
; calculation for volumes with non-power-of-two dimensions.
;
dim = vdc_getdim(dfd, num_xforms)

;
; Create an appropriately sized array to hold the volume
; and a 2D array for reading the data
;
f = fltarr(dim)
slice = fltarr(dim[0], dim[1])

An Overview of VAPOR Data Collections 14

;
; Prepare to read the indicated time step and variable
;
vdc_openvarread, dfd, 0, ‘vx’, num_levels

;
; Read the volume one slice at a time
;
for z = 0, dim[2]-1 do begin
 vdc_bufreadslice, dfd, slice

; IDL won't let us read directly into a
; subscripted array – need
; to read into a 2D array and then copy to 3D
;

 f[*,*,z] = slice
endfor

;
; Close the currently opened variable/time-step.
;
vdc_closevar, dfd

;
; Destroy the "buffered read" data transformation object.
; We're done with it.
;
vdc_bufreaddestroy, dfd

end

An Overview of VAPOR Data Collections 15

Reading data – example 2
This example differs from the previous one in that we extract a spatial subregion of the
volume instead of reading the entire volume.

; Set the refinement level. A value of -1 implies
; native data resolution.
;
num_levels = -1

;
; Create a "Region Read" object to read the data.
; The handle returned by this routine will permit
; data to be read from the data collection associated
; with the .vdf file, ‘/tmp/test.vdf’
;
vdffile = ‘/tmp/test.vdf’
dfd = vdc_regreadcreate(vdffile)

dim = vdc_getdim(dfd, num_levels)

;
; Compute the coordinates for the desired subregion.
; In this case, the first octant will be read
min = [0,0,0]
max = (dim / 2) - 1

;
; Create an appropriately sized array to hold the volume
;
vx = fltarr(dim/2)

vdc_openvarread, dfd, 0, ‘vx’, num_levels

;
; Read the volume subregion. Note, unlike the
; buffered read/write objects, the "Region Reader"
; object does not read a single slice
; at a time -- it slurps in the entire region
; in single call.
;
vdc_regread, dfd, min, max, vx

vdc_closevar, dfd

vdc_regreaddestroy, dfd
end

An Overview of VAPOR Data Collections 16

An Overview of VAPOR Data Collections 17

Appendix A – Handling data generated by a Fortran
program
Getting data from a Fortran code into a VDC can be tricky business. At present an API
for writing output directly from a Fortran program to a VDC is not supported. Hence,
data must first be written out to an intermediary file, and subsequently translated to a
VDC using either command line tools or the IDL interface discussed earlier. The tricky
part is in generating an intermediary file that the conversion utilities can understand. Two
issues that arise are:

• Differences in bit endianness between the machine generating the data and the
machine where the data translation will take place

• Arcane syntax required by Fortran to output a raw data file.

Bit Endianness
Two machine representations for binary floating point numbers are commonly found
today: Little-endian (used by Intel processors) and Big-endian (used by most everybody
else). If the raw data file generated by your simulation code was produced on a machine
different from the one you are creating your VDC on, there may be an endian mismatch.
Fortunately, this is easily resolved by using either the –swapbyte switch, if using the
raw2vdf command line utility, or using the /SWAP_ENDIAN,
/SWAP_IF_LITTLE_ENDIAN, or SWAP_IF_BIG_ENDIAN open procedure
keywords, if using the IDL language extensions, provided by VAPOR, to translate your
data.

Writing raw data from Fortran
Creating a raw data file from Fortran - one containing binary data with no header or
trailer – requires more effort than it should. Common practice among many Fortran
programmers is to write binary data as an unformatted, sequential file. Unfortunately, on
UNIX systems this results in the inclusion of a data header and/or trailer. Care must be
taken if the header is to be avoided. The code snippet below demonstrates how to write a
contiguous volume of data (3d array) as a raw file:

REAL MYARRAY(NX,NY,NZ)

OPEN(1,FILE='myarray.raw',FORM='UNFORMATTED',
ACCESS='DIRECT', RECL=NX*NY*NZ)
WRITE (q,REC=1) MYARRAY
CLOSE (1)

The resulting file, myarray.raw, may now be translated using either IDL or the command
line utilities described earlier.

	Vapor Data Collection
	Overview

	Reading and Writing Vapor Data Collections
	Command line utilities
	vdfcreate
	raw2vdf
	vdf2raw

	IDL Language Extensions
	A simple IDL session

	IDL Example Scripts
	Creating a .vdf file – example 1
	Creating a .vdf file – example 2
	Writing field data
	Reading data – example 1
	Reading data – example 2

	Appendix A – Handling data generated by a Fortran program
	Bit Endianness
	Writing raw data from Fortran

