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Vapor Data Collection 
This document provides an introduction to VAPOR’s data storage model, the VAPOR 
Data Collection, and presents information needed for preparing data for visualization and 
analysis in the VAPOR environment. 

Overview 
The VAPOR data analysis environment targets data sets that are time-varying, 
multivariate, and possessing very high spatial resolutions. Aggregate data sets generated 
from a single experiment that are terabytes in size are not uncommon. To accommodate 
the unique needs of these large data sets, VAPoR defines its own mechanism for storing 
field data and its associated attributes (metadata). In the VAPoR environment, a 
collection of related data, typically having been produced from a single numerical 
simulation, is known as a VAPoR Data Collection (VDC). 
 
A VDC is composed of two components: metadata and field data. Metadata are data that 
describe field data. Examples of metadata include the grid type, spatial resolution, name 
of the field variables, number of time steps, and possibly user-defined attributes. Field 
data are the numerical outputs produced by the simulation. Examples include: 
components of a velocity field, a temperature field, etc.  
 
The VDC model is different from more traditional scientific data representations, 
such as netCDF and hdf, in two important ways:  
 

1. Field data are stored as wavelet transformed coefficients. I.e. field data undergo a 
user-defined number (and type) of wavelet transforms before they are written to a 
file. Inverse wavelet transforms may be easily and efficiently applied to the stored 
wavelet coefficients, and the original field data reconstructed. Furthermore, the 
data need not be reconstructed at its original grid resolution. The user may elect to 
reconstruct a coarsened approximation of the data to reduce memory 
requirements, processing time, etc.  

 
2. VDC data (metadata and field data) are not stored in a single file as is commonly 

done with other scientific data formats. Instead, metadata, individual field data 
time steps, variables, and wavelet coefficients are all stored in separate files. 
Distributing the pieces in this manner is essential for effectively managing 
terabyte sized data collections.  
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Reading and Writing Vapor Data Collections 
VAPOR provides a collection of tools for importing simulation field data into a VDC, or 
exporting data from a VDC to external applications. Presently, importing and exporting 
operations may be performed via command line utilities, extensions to RSI’s IDL, or 
through a C++ library. This document gives an overview of the available command line 
utilities and IDL language extensions.  
 
Before describing the import/export operators, a basic understanding of the VDC file 
structure is required. As discussed above, the components of a VDC are distributed 
across different disk files. All metadata for a VDC are stored in a single .vdf file. A .vdf 
file is encoded in XML and may easily be browsed, or even edited, with widely found 
XML editors and browsers (most web browsers will read and display XML).  
Field data are stored in netCDF data files as coefficients output from a user-directed 
number of wavelet transformation passes. Each .netCDF file contains the wavelet 
coefficients associated with a single wavelet transformation pass applied to a single field 
variable, at a single time step. For example, applying two transformation passes to the X 
component of a velocity vector, vx, from the first time step in a data collection would 
result in the generation of three netCDF files with the extensions .nc0, .nc1, and .nc2. 
The first file, .nc0, contains the wavelet coefficients necessary to reconstruct vx at its 
coarsest approximation level (1/4 the original resolution along each coordinate axes). The 
.nc1 file provides the wavelet coefficients necessary to reconstruct the vx variable at ½ 
the original resolution, etc. By splitting the wavelet coefficients into separate files, the 
user is afforded the opportunity to maintain an incomplete, but still valid VDC. 
 
Thus a VDC is considered valid even if finer approximation levels are missing. In the 
above example, the user may choose to store the .nc2 coefficients off line in order to save 
space. Furthermore, a VDC is valid even if entire time steps or variables are not present 
on disk. The goal of supporting incomplete VDCs is to provide the user the flexibility 
needed to manage very large data sets.  Hence a minimal valid VDC consists only of a 
metadata .vdf file, and no field data. 
 
The process of creating a VDC is straightforward:  
 

1. Generate a .vdf file defining the number and name of variables, number of time 
steps, and resolution of each volume in a data set, as well as the number of 
wavelet transformations to apply. 

2. Translate raw data volumes into wavelet-transformed coefficients. 
 
The first step is performed once for a VDC. The number of variables, time steps and the 
resolution are all determined by the data itself. The number of wavelet transforms is a 
user option that determines how many, and what resolution, field data approximations 
will be available for subsequently transformed data. Specifying a value of zero implies no 
transformations and the data will only be available at full resolution. A value of one 
implies a single transformation; the data will be available at full and half resolution. And 
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so on.  Step two may be repeatedly performed as needed, and when needed, until the 
VDC is fully populated as defined by the associated .vdf file. 
 
The sections that follow describe the various tools available for importing and exporting 
raw data to/from a VDC. 

Command line utilities 
Three command line utilities are currently available for writing and reading a VDC: 
 
Command Description 
Vdfcreate Generates a .vdf metadata file 
Raw2vdf Forward transforms a file containing a block of floats and stores the 

results in a VDC 
Vdf2raw Inverse transforms a field variable found in a VDC and stores the 

results on disk as a block of floats. 
 
 
A brief overview of each command is presented below. For a complete description of all 
of the command line options supported by a command, the command may be invoked 
with the ‘-help’ option. For example: 
 
 vdfcreate -help 
 

 

Note: Prior to running any VAPOR commands you must configure your user 
environment by sourcing one of the VAPOR setup scripts: vapor-setup.csh or vapor-
setup.sh. For C-shell or its derivatives use: 
 

source vapor-setup.csh 
 
For the Bourne shell or its derivatives use: 
 

. vapor-setup.sh 

vdfcreate 
The vdfcreate command line utility generates a .vdf file defining a VDC. The user may 
specify a limited number of metadata attributes including: the volume dimension, number 
of time steps, number of forward wavelet transforms, and the variable names. The 
invocation: 
 

vdfcreate –dimension 512x512x512 –numts 100 \ 
–level 3 –varnames vx:vy:vz foo.vdf 

 
would produce a .vdf file named foo.vdf. This file would describe a VDC containing 100 
time steps, starting from 0 and running through 99; three field variables, vx, vy and vz; 
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each volume would have a spatial resolution of 5123; and three wavelet transforms would 
be applied. Thus the data will be accessible at the following resolutions: 5123, 2563, 1283, 
and 643. 

raw2vdf 
The raw2vdf command reads a volume from disk stored as a block of floats (a 
contiguous, 3D array of unformatted, 32bit, binary floating point values with no header or 
trailer information), transforms the data into wavelet space, and stores it in a VDC. 
Assuming we used the .vdf file created in the previous example, the command: 
 

raw2vdf -ts 0 –varname vx foo.vdf rawvx.float 
 
would transform the volume stored in the file rawvx.float and write it into the VDC 
associated with the foo.vdf metafile. The time step and variable would be 0 and vx, 
respectively. The volume contained in rawvx.float must have a resolution of 5123 as 
defined in the .vdf file. Furthermore, the volume will undergo three wavelet 
transformations, resulting in a coarsest resolution of 643. 

 

Note: See the Appendix for a discussion on converting data output from a FORTRAN 
program into a VDC. 

vdf2raw 
This command extracts a variable (3D data volume) from a VDC, applies an inverse 
wavelet transform, and stores the results in a file. Following our previous example, the 
command: 
 

vdf2raw –ts 0 –varname vx –level 2 foo.vdf \ 
rawvx256.float 

 
would extract a 2563 version of the vx variable, at time step 0, and store the inverse 
wavelet transformed results as a block of floats in the file rawvx256.float. 
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IDL Language Extensions 
Extensions to the IDL language in the form of new IDL system routines provide a 
powerful mechanism for interacting with VDCs, offering data interaction capabilities that 
go far beyond what is currently possible with the suite of command line utilities 
described above. Using IDL language extensions a user may not only define a .vdf file, as 
with the command line utilities, but may also programmatically edit an existing file, or 
read the contents of a .vdf file into an IDL session. Furthermore, the IDL language 
extensions expose .vdf metadata attributes that are not accessible via the command line 
utilities. For example, with the IDL routines a user may set or get user-defined floating, 
integer, or character text arrays associated with a time step, a variable within a time step, 
or that are global to the entire VDC. These user-defined attributes have no meaning to 
VAPOR. Their interpretation and application is entirely up to the user. 
 
In addition to operating on .vdf files, the IDL routines also provide a number of 
mechanisms for importing/exporting data to/from a VDC. Field data imported from a 
VDC into IDL are stored as a 3D IDL array. Similarly, IDL export routines export data 
contained in a 3D IDL array.  

 

Note: Prior to running any VAPOR IDL commands you must configure your user 
environment by sourcing one of the VAPOR setup scripts: vapor-setup.csh or vapor-
setup.sh. For C-shell or its derivatives use: 
 

source vapor-setup.csh 
 
For the Bourne shell or its derivatives use: 
 

. vapor-setup.sh 

 

A simple IDL session 
The following step-by-step instructions demonstrate a simple IDL session using one of 
the IDL example scripts provided by VAPOR. It assumes that the user’s VAPOR 
configuration environment has been properly established as per above. 
 

1. Change working directories to the VAPOR IDL examples directory: 
 

% cd $VAPOR_HOME/examples/idl 
 
2. Invoke the IDL interpreter using whatever IDL startup command is appropriate 

for your environment. For example, simply typing idl will work in many 
environments: 

 
% idl 
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3. From the IDL command prompt, run the example program named 

WriteVDF.pro: 
 

IDL> .run WriteVDF 
 

4. Exit the IDL interpreter: 
 

IDL> exit 
 
You should now have a VAPOR data collection in the /tmp directory named test.vdf. 
This data set may be explored using VAPOR’s interactive data browser, vaporgui. 
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IDL Example Scripts 
A number of rudimentary IDL example scripts are presented below. 

Creating a .vdf file – example 1 
IDL system routines for operating on .vdf files are all prefixed with a vdf_, for example, 
vdf_create. The following example shows how to create a simple .vdf file that will 
contain only a single time step, and a single variable. 
 
; 
; Dimensions of the data volumes - all volumes  
; in a dataset must be of the same dimension 
; 
dim = [512,512,512] 
 
; 
; Number of forward wavelet transforms to apply to  
; data stored in the data set. A value of 0 indicates  
; that the data should not be transformed. A value of 1  
; implies a single transform. The resulting 
; data will be accessible at the original resolution 
; and 1/8th resolution(half resolution in each dimension). 
; A value of two implies two coarsenings, and so on. 
; 
num_levels = 2 
 
; 
; Create a new VDF metadata object of the 
; indicated dimension and transform level. vdf_create() 
; returns a handle, named mfd in this example,  
; for future operations on the metadata object. 
; 
mfd = vdf_create(dim,num_levels) 
 
; 
; Set the maximum number of timesteps in the data set. 
; Note, a valid data set may contain less than the 
; maximum number of time steps, but not more 
; 
timesteps = 1 
vdf_setnumtimesteps, mfd,timesteps 
 
; 
; Set the names of the variables the data set will 
; contain. In this case, only a single 
; will be present, "vx”. 
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; 
varnames = [vx] 
vdf_setvarnames, mfd, varnames 
 
; 
;   Store the metadata object in a file for subsequent use 
; 
vdffile = '/tmp/test.vdf' 
vdf_write, mfd, vdffile 
 
; 
; Destroy the metadata object. We're done with it. 
; Note. Neglecting to destroy the object once you 
; are done with it can have unpredictable results. 
vdf_destroy, mfd 
end 
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Creating a .vdf file – example 2 
This example differs slightingly from the first. We’ll add more time steps, variables, and 
set some other metadata attributes. 
 
dim = [512,512,512] 
num_levels = 2 
 
mfd = vdf_create(dim,num_levels) 
 
; 
; This VDC will contain 100 time steps 
; 
timesteps = 100 
vdf_setnumtimesteps, mfd,timesteps 
 
; 
; Set the names of the variables the data set will 
; contain. In this case, three variables 
; will be present, "vx", “vy”, and “vz” 
; 
varnames = ['vx',vy,vz] 
vdf_setvarnames, mfd, varnames 
 
; 
; Set the extents of the volume in user-defined 
; physical coordinates. Note, as the aspect ratio of 
; the user-defined coordinates do not match that of 
; the volume resolution (512x512x512), the volume 
; will be stretched when rendered. I.e. the spacing 
; between the Z coordinate samples is defined to 
; be twice that of X or Y. 
; 
extents = [0.0,0.0,0.0,100.0, 100.0, 200.0] 
vdf_setextents, mfd, extents 
 
; 
; Set a global comment 
; 
vdf_setcomment, mfd, ‘This is my xxx data’ 
 
; 
; Set user defined, floating point attribute  
; data. In this case, montonically increasing floating 
; point numbers from 0 to 99.0.  
; 
; We first define a name for the attribute, “MyMetadata”. 
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; 
attribute_name = ‘MyMetadata’ 
f = findgen(100) 
Vdf_setdbl,mfd,attribute_name, f 
 
vdffile = '/tmp/test.vdf' 
vdf_write, mfd, vdffile 
 
 
vdf_destroy, mfd 
end 
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Writing field data 
Once a .vdf file has been created using either the IDL commands discussed above, or the 
command line utilities discussed previously, the VDC may be populated with data. IDL 
routines that operate on field data are prefixed with vdc_. 
 

 
 

Note: See the Appendix for a discussion on converting data output from a FORTRAN 
program into a VDC. 

; 
; Create a "buffered write" data transformation 
; object. The data transformation object will permit 
; us to write (transform) raw data into the data set. 
; The metadata for the data volumes is obtained 
; from the metadata file we created previously. I.e. 
; 'vdffile' must contain the path to a previously 
; created .vdf file. The vdc_bufwritecreate routine 
; returns a handle, 'dfd', for subsequent operations. 
; 
dfd = vdc_bufwritecreate(vdffile) 
 
 
; Get the data volume that we wish to store. 
; 
vx = my_data_generation_function() 
 
; 
; Prepare the data set for writing. We need to identify 
; the time step and the name of the variable that 
; we wish to store. In this case, the first time step, 
; zero, and the variable named ‘vx’ 
; 
vdc_openvarwrite, dfd, 0, ‘vx’ 
 
 
; 
; Write (transform) the volume to the data set one 
; slice at a time 
; 
for z = 0, dim[2]-1 do begin 
    vdc_bufwriteslice, dfd, vx[*,*,z] 
endfor 
 
; 
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; Close the currently opened variable/time-step. We're 
; done writing to it 
; 
vdc_closevar, dfd 
 
; 
; Destroy the "buffered write" data transformation 
; object. We're done with it. 
; 
vdc_bufwritedestroy, dfd 
 
end 
 

An Overview of VAPOR Data Collections  13



Reading data – example 1 
Reading data from a VDC is similar to writing: 
 
; This example shows how to read a single data volume 
; from a VDC data collection using a "Buffered Read" 
; object. The entire spatial domain of the volume 
; is retrieved (as opposed to fetching a spatial 
; subregion). However, the volume is extracted at 
; its coarsest spatial resolution. 
; 
 
; 
; Number of forward wavelet transforms. 
; A value of 0 indicates that the data should be 
; read at coarsest) resolution. A value of 1 
; implies a the next coarsest, etc. A value of -1 
; implies the finest (native) data resolution. 
; 
num_levels = 0 
 
vdffile = '/tmp/test.vdf' 
 
; 
; Create a "Buffered Read" object to read the data, 
; passing the path to the metadata file created in; 
; the previous example. 
; 
dfd = vdc_bufreadcreate(vdffile) 
 
; 
; Determine the dimensions of the volume at  
; the given transformation level. 
; 
; Note. vdc_getdim() correctly handles dimension 
; calculation for volumes with non-power-of-two dimensions. 
; 
dim = vdc_getdim(dfd, num_xforms) 
 
; 
; Create an appropriately sized array to hold the volume 
; and a 2D array for reading the data 
; 
f = fltarr(dim) 
slice = fltarr(dim[0], dim[1]) 
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; 
; Prepare to read the indicated time step and variable 
; 
vdc_openvarread, dfd, 0, ‘vx’, num_levels 
 
; 
; Read the volume one slice at a time 
; 
for z = 0, dim[2]-1 do begin 
    vdc_bufreadslice, dfd, slice 
 

; IDL won't let us read directly into a 
; subscripted array – need 
; to read into a 2D array and then copy to 3D  
; 

    f[*,*,z] = slice 
endfor 
 
; 
; Close the currently opened variable/time-step. 
; 
vdc_closevar, dfd 
 
 
; 
;   Destroy the "buffered read" data transformation object. 
;   We're done with it. 
; 
vdc_bufreaddestroy, dfd 
 
end 
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Reading data – example 2 
This example differs from the previous one in that we extract a spatial subregion of the 
volume instead of reading the entire volume. 
 
; Set the refinement level. A value of -1 implies  
; native data resolution. 
; 
num_levels = -1 
 
; 
; Create a "Region Read" object to read the data. 
; The handle returned by this routine will permit 
; data to be read from the data collection associated 
; with the .vdf file, ‘/tmp/test.vdf’ 
; 
vdffile = ‘/tmp/test.vdf’ 
dfd = vdc_regreadcreate(vdffile) 
 
dim = vdc_getdim(dfd, num_levels) 
 
; 
; Compute the coordinates for the desired subregion. 
; In this case, the first octant will be read 
min = [0,0,0] 
max = (dim / 2) - 1 
 
; 
; Create an appropriately sized array to hold the volume 
; 
vx = fltarr(dim/2) 
 
vdc_openvarread, dfd, 0, ‘vx’, num_levels 
 
; 
; Read the volume subregion. Note, unlike the 
; buffered read/write objects, the "Region Reader" 
; object does not read a single slice 
; at a time -- it slurps in the entire region 
; in single call. 
; 
vdc_regread, dfd, min, max, vx 
 
vdc_closevar, dfd 
 
vdc_regreaddestroy, dfd 
end 
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Appendix A – Handling data generated by a Fortran 
program 
Getting data from a Fortran code into a VDC can be tricky business. At present an API 
for writing output directly from a Fortran program to a VDC is not supported. Hence, 
data must first be written out to an intermediary file, and subsequently translated to a 
VDC using either command line tools or the IDL interface discussed earlier. The tricky 
part is in generating an intermediary file that the conversion utilities can understand. Two 
issues that arise are: 

• Differences in bit endianness between the machine generating the data and the 
machine where the data translation will take place 

• Arcane syntax required by Fortran to output a raw data file. 

Bit Endianness 
Two machine representations for binary floating point numbers are commonly found 
today: Little-endian (used by Intel processors) and Big-endian (used by most everybody 
else). If the raw data file generated by your simulation code was produced on a machine 
different from the one you are creating your VDC on, there may be an endian mismatch. 
Fortunately, this is easily resolved by using either the –swapbyte switch, if using the 
raw2vdf command line utility, or using the /SWAP_ENDIAN, 
/SWAP_IF_LITTLE_ENDIAN, or SWAP_IF_BIG_ENDIAN open procedure 
keywords, if using the IDL language extensions, provided by VAPOR, to translate your 
data. 

Writing raw data from Fortran 
Creating a raw data file from Fortran - one containing binary data with no header or 
trailer – requires more effort than it should. Common practice among many Fortran 
programmers is to write binary data as an unformatted, sequential file. Unfortunately, on 
UNIX systems this results in the inclusion of a data header and/or trailer.  Care must be 
taken if the header is to be avoided. The code snippet below demonstrates how to write a 
contiguous volume of data (3d array) as a raw file: 
 

REAL MYARRAY(NX,NY,NZ) 
 
OPEN(1,FILE='myarray.raw',FORM='UNFORMATTED', 
ACCESS='DIRECT', RECL=NX*NY*NZ)   
WRITE (q,REC=1) MYARRAY 
CLOSE (1) 

 
The resulting file, myarray.raw, may now be translated using either IDL or the command 
line utilities described earlier. 
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