The Multiresolution Toolkit: Progressive Access for Regular
Gridded Data

John Clyne
Scientific Computing Division, National Center for Atmospheric Research
1850 Table Mesa Dr., Boulder, CO 80303 USA
clyne @ncar.ucar.edu

Abstract

We present the Multiresolution Toolkit (MTK), a wavelet
based software system for enabling progressive access to
large, regular gridded data sets. Transformations into and
out of the wavelet domain using our methods are highly
efficient, permitting application users to make effective
speed/quality tradeoffs. The transformations operate on
floating point data, are simple to implement, and lossless,
making our approach a viable alternative data representa-
tion format. The method may be easily incorporated into
new or existing visualization and analysis tools with only
minor modification. We demonstrate the utility of our sys-
tem by exploring a large turbulence simulation on a desktop
workstation using a collection of multiresolution applica-
tions we have developed or extended with MTK.

Key Words

Data Treatment and Visualization, Visualization Software,
Progressive Data Access, Wavelets, Large Data

1 Introduction

In numerous scientific disciplines the ability to generate
data, either through instrumentation or numerical simula-
tion, has out-stripped our ability to manipulate, visualize
and analyze these data. The result is that many data sets,
often produced at great expense, are not fully investigated.
In this paper we describe a wavelet-based software system
that provides progressive data access, enabling great reduc-
tion in computing resources required to operate on these
data sets by providing reduced approximations to them.
The underlying premise for this work is that many forms
of scientific inquiry can be performed using coarsened, and
therefor less resource intensive, approximations of the data.
The information extracted from these approximations may
be sufficient for the task at hand or in many cases may serve
to simply narrow the domain (spatial and/or temporal) upon
which further investigation may be conducted at greater de-
tail. Though others have proposed hierarchical data repre-
sentation schemes [17, 3, 10, 18], to our knowledge our
method is the only one that offers all of the following im-
portant traits:

e Out-of-core: Our implementation operates out-of-
core for both forward and inverse transformations,

permitting extremely large data sets to be processed
using only a modest memory footprint.

o High efficiency: Both inverse and forward transforms
are highly cpu and I/O efficient.

e Subsetting: Subregions of the data may easily and
efficiently be extracted at varying resolutions.

e Minimal storage overhead: Only a few bytes of
header information are required, typically represent-
ing less than 0.01% of the data.

e Resampling: Approximations are produced by re-
sampling the original data, not by simply subsam-

pling.

2 Previous Work

The challenges posed by large data analysis are not limited
to the numerical simulation community, or visualization in
general. Much work has been done in the area of compres-
sion, possibly combining hierarchical representation, with
an aim towards enabling interactive display by permitting
speed/quality tradeoffs.

Triangle mesh simplification methods have demon-
strated the utility of data coarsening combined with pro-
gressive refinement for the display of the largest triangle
meshes [16]. In the area of data visualization, Schroeder et
al. were probably the first to apply mesh simplification to
address the notorious problem of over tesselation with the
marching cubes and related isosurfacing algorithms [15].
Lindstrom and Silva investigate out-of-core mesh simpli-
fication methods for some of the largest published scien-
tific data sets [9]. While these approaches can greatly re-
duce triangle counts while preserving surface fidelity, and
are well-suited to progressive display, they suffer from long
preprocessing times, the need for additional storage if the
full resolution representations are to be preserved, and pre-
clude interactive isosurface selection. Further, these meth-
ods provide little benefit to other stages in the pipeline be-
yond rendering.

Others have employed compression and hierarchi-
cal methods to quantized data in order to reduce process-
ing, storage and/or communication requirements specifi-
cally for direct volume rendering. Levoy was the first to

employ hierarchical decompositions in an effort to acceler-
ate ray casting by using octrees skip areas of low opacity
[8]. Thm and Park were the first to adapt 3D wavelet com-
pression strategies that permit random access, an essential
capability for the changing access patterns required by 3D
data visualization [7]. Rodler treats 3D volumes as a collec-
tion of 2D slices, employing video coding methods to the
slices and 2D wavelet transforms within each slice [12].
The wavelet hierarchy presented by Guthe et al. is most
similar to our own, though their focus is direct volume ren-
dering, not general data simplification [6]. All of these
methods employ lossy compression strategies, quantizing
floating point data into narrow integer representations, thus
requiring multiple copies of the data to be maintained if the
original data are to be preserved.

The more general approach of using hierarchical ap-
proximations to represent the data sets themselves with
varying resolutions was introduced by Cignoni et al. [3]
and Wilhelms and Van Gelder [17]. Cignoni et al. generate
multiresolution representations of scattered data through
successive tetrahedral refinement of a coarsened initial ap-
proximation [3]. While Cignoni’s method is capable of
supporting irregular as well as regular data, at the same
time it fails to preserve regularity in coarsened representa-
tions even when it originally existed. Though not based on
wavelet theory, Wilhelms and Van Gelder’s approximation
strategy is more similar to our own, exploring a small num-
ber of basis functions to reconstruct the field [17]. Zhou
introduces yet another tetrahedra based framework, differ-
ing from that of Cignoni in that interpolation is avoided
by relying on subsampling, making their method more ef-
ficient, though limited to regular grids [18]. For the most
part all of these methods are cpu and memory intensive, do
not support region subsetting, and impose significant stor-
age overhead.

Most closely related to our own efforts are those of
Pascucci and Frank [10]. Unlike our own wavelet-based
approach, Pascucci and Frank’s method is based upon
Space Filling Curves (SPF) that enable subsetting and pro-
gressive access for regular gridded data by simply reorga-
nizing the layout of the data storage. These methods do not
alter the data in any way and are therefore inherently invert-
ible. However, coarsened resolutions are then necessarily
produced by nearest neighbor sampling, leading to inferior
approximations.

3 Algorithm

Our algorithm, described in more detail elsewhere [4], as-
sumes a Cartesian gridded, regularly spaced data volume of
dimension N, x N, x N, where each dimension is of size
27 for some positive integer j. The power-of-two restriction
may be relaxed with either padding or careful attention to
boundary conditions. We reorder our N x Ny X N, volume
into blocks of size b, where b is also a power of two, and as-
sociate subvolumes consisting of eight neighboring blocks
with a 2 X 2 X 2 superblock . For each block in a superblock

Tile Tile Tile Tile
00 01 10 11
X Transform

L1 | HI L1 | HI L1 | HI L1 | HI
00 | 00 01 | 01 10 | 10 11| 11

I

Y Transform

o Lo | (5 T | [T | [
00 01 10 11

H2 H2 H2 H2

00 01 10 11

\‘\‘ Reorder

L2 | L2 H2 | H2
00 | 01 00 | 01

L2 | L2 H2 | H2
10 11 10 11

HI | HI Hl | HI
00 | 01 10 11

Figure 1. Forward transformation and reordering of four
neighboring 2D tiles composing a supertile

we apply a single pass of a separable wavelet transform
using the Quincunx decomposition ordering [13]. That
is, we first transform along the X axis, decomposing the
block into two subbands. We then apply the Y direction
transform only to the low-frequency A coefficients result-
ing from the X transform. Similarly, we then apply the
Z axis transform only to the new A coefficients resulting
from the Y axis pass. After a single complete pass of the
wavelet transform has been completed for all the blocks in
a superblock, we gather the \y_; and high-frequency ~y_1
coefficients of the superblock together in the manner de-
picted by the 2D example of a supertile shown in figure 1.

After each superblock has been transformed in this
manner, we recursively apply the procedure to each set of
A coefficients produced in the previous pass, forming new
superblocks with each pass. With each pass the number
of available \ blocks is reduced by a factor of eight. Pro-
cessing stops when only a single A block remains or after a
user-determined limit is reached.

3.1 Implementation

The paragraphs above describe our conceptual approach. In
practice, we balance memory and efficient disk access, ap-
plying the forward transform using a depth-first, binary tree
traversal with slabs of raw block data serving as leaf nodes.
The data is streamed out-of-core with slabs read in sequen-

tially from disk, only as needed, in a single pass. In this
way our memory footprint can be kept quite small, requir-
ing only memory to contain less than 4 x Nx x Ny blocks,
where Nz and Ny are the resolution X and Y volume co-
ordinate dimensions in blocks, respectively. The depth-first
tree traversal operates as follows: If a node is a leaf node,
a slab of blocks is read into memory as \g coefficients. If a
node is not a leaf node and not the root, the forward wavelet
transformation is applied along all three axis to the \; co-
efficients stored by the node’s two children as indicated in
figure 1. The resulting v;_1 coefficients are written to disk
and the new \;_; coefficients are stored in memory for sub-
segent processing when the node’s parent is visited. If the
node is the root, or the user-defined maximum transforma-
tion limit is reached, then the \; coefficients are written to
disk as well.

The inverse transform operates in much the same way
as the forward, reading A and ~ coefficients only as needed.
Of course if we are reconstructing a subvolume, or the
full volume at a coarsened resolution, our memory require-
ments are even lower. We also note that the reordering step
can be performed during the transform, compressing these
two operations into one.

The block based method just described has a number
of attractions worth noting:

e The blocks, when sized appropriately, may be trans-
formed quickly on cache-dependent microprocessors.

e By gathering our \; coefficients into new blocks at
the end of each transformation pass, we can lessen the
effects of block boundary artifacts typical of block-
based encoding schemes.

e The number of coefficients transformed within a block
does not decrease with each pass, facilitating the use
of higher-order wavelets with larger supports.

e We can easily and efficiently reconstruct approxima-
tions of subvolumes or volumes at any desired power-
of-two resolution. This is in contrast to previous block
based approaches; by reordering our storage of co-
efficients such that coefficients are grouped by level
instead of by spatial location, we can better accom-
modate page-based storage access, greatly reducing
cache and page faults in the case of in-core access and
/O operations for out-of-core access.

4 The Multiresolution Toolkit

To demonstrate the applicability of our progressive data
scheme we have implemented a suite of tools we col-
lectively call the Multiresolution Toolkit (MTK). MTK
presently consists of a base C++ object library, upon which
multiresolution tools may easily be layered, a direct vol-
ume rendering application, MDB, extensions to the pop-
ular commercial analysis package, RSI’s Interactive Data
Languate (IDL), and finally, a data importer for the Visual-
ization Toolkit (VTK) [14].

4.1 MTK library

The base library consists of a collection of C++ class ob-
jects for applying forward and inverse wavelet transforma-
tions on 3D Cartesian gridded data, as described previ-
ously. The class library encapsulates a 3D implementation
of the Lifting method based on Swelden’s [5] Liftpack soft-
ware. Hence, a wide family of wavelet transforms are sup-
ported. Data operated on by the transformation objects are
assumed to have been previously blocked. Padding is not
necessary for non power-of-two data; the wavelet support
is adapted as necessary.

Layered on top of the core transformation object li-
brary is a file API for reading and writing wavelet coeffi-
cients from disk. The file format itself is not exposed. The
API provides a simple interface for streaming, out-of-core
access with transformation files; files may be read by arbi-
trary axis-aligned, block-bounded subregions, and read or
written by slabs. The width of a slab is one block. In ad-
dition to storing the actual wavelet coefficients the wavelet
block files also contain a small amount of metadata, includ-
ing min, max values for each block. Each approximation
level is stored in a separate file to enable the off-line stor-
age of the highest-frequency detail coefficients if desired.

4.2 MDB

The Multiresolution Data Browser (MDB) implements a
direct volume rendering engine with support for progres-
sive data access. In particular, region subsetting is sup-
ported (axis-aligned, rectangular parallelpipeds). MDB
uses a block-based LRU cache to improve performance.
Blocks of data are quantized to 8-bit quantities on the fly
at negligible cost and stored in the data cache. The cache
size may be set arbitrarily large by the user. The cache
is particularly beneficial when moving back and forth be-
tween resolutions and for supporting temporal animations.
A 200 time step 128 volume requires 400MBs of memory
and is easily accommodated by even a modestly equipped
PC. Once loaded into main memory the volumes may be
streamed for interactive temporal animations. Two di-
rect volume rendering engines are currently supported, one
based on SGI’s Volumizer [1], the other is implemented
directly on top of OpenGL using 2D texture mapping, en-
abling use on PCs with commodity graphics cards.
Because our algorithm preserves the regularity of the
data, adapting our volume rendering engines for progres-
sive access is trivial; they need only be capable of handling
data with varying resolution from frame to frame. We must
also scale opacities for the changing sampling distances so
that the translucency does not depend on the number of
sampling points which vary for different approximations.
We can accomplish this oblivious to the rendering engine
by adjusting the opacity lookup table. The composting op-
eration is non-linear and the correct equation for opacity
adjustment is o’ = 1.0 — {/1.0 — o, where n is 1771

4.3 Extensions to existing tools

We’ve extended two existing tools to take advantage of pro-
gressive data access: IDL, and the popular freeware visu-
alization toolkit, VTK [14]. IDL is a general purpose data
analysis and post-processing tool that is widely used by re-
searchers in the earth sciences. Although recent versions
of IDL provide threaded implementations of many of their
computationally intensive intrinsic functions, many user-
defined IDL functions are serial. Hence, performance is
often far from interactive. The progressive data access ca-
pability we’ve added to IDL can greatly reduce the cost of
many operations.

Similarly, we have added a MTK data importer to
VTK. VTK, while possessing tremendous functionality, is
notorious for its poor performance on large data. Again,
progressive data access provides a means for accelerating
any of VTK’s robust suite of visualization algorithms.

5 Results

In the section that follows we present some results from
our implementation. Our platform for experimentation is
an SGI Octane?2 with a 600Mhz, R14000 processor, 5 GB’s
of memory, V12 graphics, and a Fiber Channel attached
RAID. Our data set is a 200 time-step, 5123 solar turbu-
lent convection simulation occupying nearly half a terabyte
of storage. We’ve transformed the data using three passes
of the Haar wavelet transform, as described, resulting in
a base volume with a resolution of 643. The block size
we have chosen for our tests is 322, which strikes a balance
between processor cache efficiency and having an adequate
number of coefficients for our transforms.

We are interested in exploring several aspects of the
performance of our method: 1) the quality of the coars-
ened approximations, 2) the speed at which we can recon-
struct a given volume or subvolume to a desired resolu-
tion, 3) the performance benefit to our data browser, and 4)
forward transform performance. This last metric, often ig-
nored elsewhere, is an important consideration, particularly
when dealing with time varying data possessing multiple
time steps with high spatial resolutions.

Figure 2 shows a volume visualizations of our turbu-
lence data set that has been direct volume rendered using
VTK’s software ray caster. Each coarsening in resolution
represents a factor of eight reduction in data and a corre-
sponding reduction in storage, communication, and pro-
cessing costs. Clearly the image degrades at lower reso-
lutions, but even the 128> approximations, which represent
1/64th of the original data, preserve the overall structure of
the simulation. Only the finest details are lost and images
of this fidelity may still be used to identify the location,
or observe dynamics, of the large scale vortices. At 256>
hardly any degradation is observed and it is difficult to ar-
gue that the higher fidelity images resulting from the 5123
data warrant the expense in their computation for the view
point selected. Clearly if we were to zoom in on a feature,

Table 1. Timings in seconds for subregion extraction

’ Size | Transform ’ 1/0 | Total | SPF method

1282 [0.09 0.31 | 0.40 | 0.56
2563 | 0.19 0.56 | 0.75 | 0.57
5123 | 0.31 0.82 | 1.16 | 0.65
10243 | 0.39 1.64 | 2.02 | 0.70

the higher resolution data would be desirable. But in this
case view frustum clipping would eliminate much of the
domain from the field of view, permitting us to subset the
volume and avoid reconstruction of the entire domain.

To demonstrate scalability and test the efficiency of
reconstruction we ran two different experiments using a
10243 upsampled version of our 5123 data. The forward
wavelet transformation was applied using four passes re-
sulting in a base resolution of 643. In our first performance
experiment we look at the efficiency of extracting a 1283
subvolume from the center of the domain at varying trans-
formation levels. Table 1 shows the average timings for the
I/O and the computation of the reconstruction transforma-
tion itself. Also shown is the total reconstruction time using
the SPF method of Pascucci and Frank. We observe that the
costs of both I/O and the wavelet transformation increase in
proportion to the number of passes required to reconstruct
the subvolume. This result is expected as with each pass the
number of additional coefficients required to reconstruct a
subvolume of constant dimension remains constant. How-
ever, even in the case of the 10243 volume the extraction
takes only a couple of seconds. We also note that I/O domi-
nates the reconstruction costs, emphasizing how little over-
head our data representation imposes. Lastly, we note that
the SPF method, which does not rely on data transforma-
tions, has near-constant performance.

In our second experiment we look at the cost of recon-
structing the entire volume domain at varying resolutions.
Again our base resolution is 643. Table 2 shows the time
distributions for our method and again compares the total
time with the SPF approach. The coarsest volume in our
test is 643 which is the resolution of our transformed base
volume. Hence, there are only I/O costs for reconstruct-
ing this volume and no transformation costs. As we would
expect, the costs increase in linearly with the total num-
ber of samples. However, unlike with our subvolume ex-
traction experiments, the transformation and I/O costs are
more balanced for full volume reconstructions. We spec-
ulate that this is due to efficiency gains in the I/O stage
which can read in larger chunks of contiguous data when
not extracting a subvolume. We note that the good balance
between the I/O and transformation points to future possi-
ble efficiency gains by pipelining these steps. Finally, we
note that unlike with subregion extraction the costs of the
SPF method grow exponentially with the number of sam-
ples.

Forward transformation costs are an important con-

Figure 2. The Rast turbulence data set direct volume rendered at approximation resolutions of 1283 and 2563, and native
5123 resolution, from left to right.

Table 2. Timings in seconds for full domain reconstuction

‘ Size | Transform | 1/0 | Total | SPF method |

64> 1 0.0 0.13 | 0.13 | 0.10
1283 | 0.11 0.22 | 0.33 | 0.60
2563 | 1.21 1.14 | 2.36 | 1743
5123 | 11.01 9.85 | 20.86 | 278.17

Table 3. Timings for three passes of forward transform

| Size | Read | Write | Trans. | Total | Memory |
2563 1.3 0.5 1.1 2.9 28 MBs
5123 15.6 3.9 8.8 28.3 92 MBs
10243 | 207.7 | 42.7 67.1 307.5 | 351 MBs

sideration for extremely large data sets. Table 3 shows the
time in seconds for reading raw data from disk, applying
three passes of the forward transform, and writing the co-
efficients back to disk. The amount of processor memory
allocated, as reported by the IRIX operating system, is also
shown. We note that unlike other progressive access meth-
ods reported in the literature, forward transformation, like
the inverse, is quite fast, and again the I/O times domi-
nate. We also see that as expected our memory require-
ments grow only with N2, making possible the transfor-
mation of a 10242 data set, which occupies 4GBs of disk
space, using less than 400 MBs of main memory.

Finally, we look at application performance. Table 4
shows rendering rates of our multiresolution direct volume
renderer, MDB, and Table 5 shows the performance of IDL
computing a histogram at various resolutions. As we would
expect, as the resolution decreases the performance in-
creases. However, in both cases as the resolution becomes
extremely coarse the inverse resolution/performance rela-
tion becomes non-linear; the speedup is not as we’d hope.

Table 4. Performance of volume rendering with MDB

| | 64] 128% | 256” | 512 |
FPS 130[60 [19 [03
Speedup | 47.1 | 22.0 | 6.9 1.0

Table 5. Performance of computing a histogram with IDL

| | 643] 128° | 256° | 5127 |
Time/sec | 0.48 | 0.9 2.6 21.2
Speedup | 44.0 | 23.6 | 8.1 1.0

We expect this is due to other factors (e.g. setup time) that
begin to dominate the execution time. Nevertheless, highly
interactive rates are achieved with the coarser data.

6 Discussion

As researchers employing numerical models strive to re-
solve details in their simulations at finer and finer scales,
computational grids and the resulting data sets they gener-
ate have reached extraordinary sizes. Interactive analysis
and post processing of these data at their native resolutions
requires computational resources at least on par with those
that produced the data. Unfortunately our experience at the
National Center for Atmospheric Research has been that
analysis platforms of this scale are seldom available. As
a result, many numerical modelers are now faced with a
deluge of data that they are ill-equipped to handle. Their
challenge is often not to compute but to analyze.

While it is hoped that these data sets were not gen-
erated or acquired at such great scales needlessly, it is not
necessarily the case that the full resolution data are essen-
tial for all aspects of analysis. In particular, highly effective

data browsing or discovery may be possible using lower
resolution approximations if greater interactivity is enabled
and the full resolution data is preserved for subsequent fur-
ther analysis of detected features of interest [11, 2]. It is
this paradigm — interactive browsing of coarsened data, fol-
lowed by possibly non-interactive deeper analysis of fea-
tures in a reduced domain — that our data representation
scheme targets.

7 Conclusions

We have presented a collection of tools that enable ex-
ploratory data analysis of vast data sets by taking advan-
tage of our wavelet-based, progressive access data repre-
sentation scheme. Our toolkit permits many existing ap-
plications to be easily extended to support progressive ac-
cess. The data representation enables highly efficient sim-
plification and lossless reconstruction of floating point data
at progressively finer resolutions, making the method an at-
tractive alternative to the conventional Z-ordered storage of
arrays. By simplifying the data set, as opposed to simplify-
ing visualization output primitives, we stand to accelerate
the entire visualization process.

We anticipate extending our research in several direc-
tions. Higher-order wavelets, though more computation-
ally complex, could provide more accurate representations
of the coarsened data than those possible with the highly
computationally efficient Haar transform, allowing further
speed/quality tradeoffs. Lossless compression might also
be explored to reduce storage requirements. Irregularly
spaced data might also be accommodated though the use
of second generation wavelets.

Acknowledgements

The author would like to thank Randy Frank for provid-
ing the space filling curve source code and his insightful
comments, and thank Mark Rast and NCAR’s High Alti-
tude Observatory for provision of the Rast solar turbulent
convection data set.

References

[1] P. Bhaniramka and Y. Demange. Opengl volumizer:
A toolkit for high quality volume rendering of large
data sets. In Proceedings of 2002 Workshop on Vol-
ume Visualization, pages 45-54, 2002.

[2] N. Brummell. Scientist at jila, university of colorado.
Personal Communication, 2001.

[3] P.Cignoni, L. De Floriani, C. Montoni, E. Puppo, and
R. Scopigno. Multiresolution modeling and visualiza-
tion of volume data based on simplicial complexes. In
1994 Symposium on Volume Visualization, pages 19—
26, 1994.

[4] J. Clyne. An efficient hierarchical data representa-
tion scheme for gridded data, 2003. White Paper,
http://www.vets.ucar.edu/Reports/wavelet.pdf.

[5] G. Fernandez, S. Periaswamy, and W. Sweldens.
LIFTPACK: A software package for wavelet trans-
forms using lifting. In Wavelet Applications in Sig-
nal and Image Processing 1V, pages 396—408. Proc.
SPIE 2825, 1996.

[6] S. Guthe, M. Wand, J. Gonser, and W. Strafler. Inter-
active rendering of large volume data sets. In IEEE
Visualization *2002, pages 5360, 2002.

[7] 1. Ihm and S. Park. Wavelet-based 3D compression
scheme for interactive visualization of very large vol-
ume data. In Computer Graphics Forum, volume
18(1), pages 3—15, 1999.

[8] M. Levoy. Efficient ray tracing of volume data.
ACM Transactions on Graphics (TOG), 9(3):245—
261, 1990.

[9] P. Lindstrom and C. Silva. A memory insensitive
technique for large model simplification, 2001.

[10] V. Pascucci and R. Frank. Global static indexing
for real-time exploration of very large regular grids.
In Proceedings of Supercomputing 2001 Conference,
2001.

[11] M. Rast. Scientist at the national center for atmo-
spheric. Personal Communication, 2001.

[12] F. Rodler. Wavelet based 3d compression for very
large volume data supporting fast random access.
In Proceedings of Pacific Graphics *99 Conference,
pages 108-117, 1999.

[13] D. Salomon. Data Compression. Springer-Verlag,
2000.

[14] W. Schroeder, K. Martin, and W. Lorensen. The Vi-
sualization Toolkit: An Object Oriented Approach to
3D Graphics. Prentice Hall, 1996.

[15] W. Schroeder, J. Zarge, and W. Lorensen. Decimation
of triangle meshes. Computer Graphics, 26(2):65-70,
1992.

[16] E. Shaffer and M. Garland. Efficient adaptive simpli-
fication of massive meshes. In Proceedings of IEEE
Visualization *01, pages 127-133, 2001.

[17] J. Wilhelms and A. V. Gelder. Multi-dimensional
trees for controlled volume rendering and compres-
sion. In 1994 Symposium on Volume Visualization,
pages 27-34, 1994.

[18] Y. Zhou, B. Chen, and A. Kaufman. Multiresolu-
tion tetrahedral framework for visualizing regular vol-
ume data. In IEEE Visualization ’97, pages 135142,
1997.

