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VAPOR is an open source visual data analysis package developed by the
National Center for Atmospheric Research, with support from the National
Science Foundation. VAPOR provides a highly interactive, platform inde-
pendent, desktop exploration environment, capable of handling some of the
largest numerical simulation outputs, yet requiring only commodity comput-
ing resources. The cornerstone of VAPOR’s large data handling capability is
a wavelet-based progressive access data model that enables the user to trade-
off I/O, memory, and computing resource requirements for data fidelity. This
chapter provides an overview of VAPOR, placing an emphasis on the VAPOR
strategy for handling large data. To illustrate the effectiveness of this tech-
nique, the chapter concludes with a brief case study of two data sets: one from
Magneto-Hydrodynamics, and another from numerical weather prediction.
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20.1 Introduction

VAPOR is a visualization package that was designed from the outset as a
means to enable the interactive exploration of massive, time-varying, gridded
data sets, primarily those resulting from high-resolution numerical simula-
tions [2, 1]. For numerous computational scientists, the greatest limitation in
the visualization of large data is often the I/O. Other computational costs
incurred during analysis (e.g. computer graphics rendering, flow integration,
calculation of derived quantities) are frequently dwarfed by the time it takes
to retrieve the data from a disk.

VAPOR addresses this issue by attempting to minimize the amount of data
read from the secondary storage. This is accomplished through the use of both
a progressive access data model, designed to support efficient region-of-interest
(ROI) access, and a strong reliance on the caching of previous data retrievals
in random access memory (RAM). Hence, VAPOR’s advanced visualization
capabilities, and the ability for the user to make speed/quality trade-offs to
maintain interactivity, enable rapid feature identification or identification of
spatio-temporal regions of interest. Once identified, these reduced-size ROIs
can be quantitatively or qualitatively explored with progressively finer detail.

While suitable for use in numerous computational science domains, VA-
POR is primarily designed to address the needs of the earth and space sciences
communities, and, in particular, weather, solar, oceanic and climate science
and related disciplines. As a result, VAPOR supports features typically not
found in other packages (e.g., handling of geo-referenced data), but may lack
capabilities found in more general visualization packages (e.g., support for
unstructured computational grids).

Finally, VAPOR was designed to run on a commodity desktop (or laptop)
computing platform with a shared memory architecture. As discussed below,
interacting with sizeable data sets is enabled in VAPOR with only modest
computing resources.

20.1.1 Features

This section provides a brief overview of some fundamental capabilities
of the VAPOR GUI. These capabilities are aimed at enabling visualization
guided-analysis. VAPOR is integrated with NumPy [3] environments to pro-
vide more quantitative analysis, and to provide the ability to manipulate vari-
ables and derive new quantities.

• The VAPOR GUI was designed to run and enable highly interactive
performance using only a desktop or laptop computer equipped with
hardware-accelerated graphics. Through the use of two user-specified
data reduction parameters (20.2) and the reuse of previously computed
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and cached results, the system can provide interactive performance on
commodity platforms.

• The GUI provides common advanced visualization capabilities associ-
ated with state-of-the-art interactive visualization, making use of the
GPU for improved performance whenever possible. These capabilities
include volume rendering, isosurfaces, contour planes, steady and un-
steady flow lines, image-based flow visualization, inclusion of geometric
models, transfer function editing, calculation of derived variables, coor-
dinate axis annotation, color bars, etc.

• VAPOR supports an embedded NumPy calculation engine. Derived vari-
ables are easily expressed as Python expressions or Python scripts. These
scripts are executed only on demand. When a derived variable is re-
quested, Python calculates the derived variable at the desired accuracy
and the calculation is constrained to the requested ROI. The new vari-
able is immediately available to all data operators in the GUI. Moreover,
the derived quantity is stored in cache, if space is available, to improve
access speed for subsequent references.

• VAPOR provides several forms of steady and unsteady flow integra-
tion and visualization. The GUI offers numerous data-driven methods
for seeding integration locations. For example, random seed locations
may be biased towards high-magnitude spatial regions of an arbitrary
variable. The flow integrator does not require uniform temporal or spa-
tial sampling, and the GUI allows the selection of limited spatial and
temporal extents.

20.1.2 Limitations

Several features that are commonly found in visualization packages, aimed
for large data were deliberately not included in the VAPOR design. Many of
these limitations or omissions stem from VAPOR’s focus on the earth and
space science communities, and its emphasis on desktop computing.

• Computational grids are limited to structured, regular tessellations,
though the sampling between grid points need not be uniform.

• There is no support for distributed memory architectures. A shared-
memory programming model is assumed. Thus, the resolution of a grid
is constrained by the available shared-memory address space.

• All data in a VAPOR session are presumed to arise from a single numer-
ical experiment and are constrained to a single sampling grid; variables
sampled at different rates, or with different coordinates can not be mixed
in a single session.
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20.2 Progressive Data Access

VAPOR’s method for handling gridded data sets, resulting from high res-
olution numerical simulations, differs from many other scientific visualization
applications. Its approach is motivated by the widening gap between compute
and I/O performance. For example, in many analysis operators, especially
when time varying data are involved, the single biggest bottleneck is the rate
at which data can be retrieved from a disk.

Another technology trend factored into VAPOR’s design is the advance-
ment in output display resolution. While very high resolution tiled display
devices have been deployed at a number of research facilities, the number of
pixels available to a typical researcher working in his or her office has not
changed significantly over the years, relative to the rate of progress of other
technologies.

With these thoughts in mind, the primary approach to enabling interactive
processing of large data, employed by VAPOR, is progressive access. The aim
of this data model is to allow the user to make trade-offs between speed and
accuracy, providing a form of focus-plus-context [4]. Users are able to acceler-
ate the scientific discovery process by formulating hypotheses in an interactive
mode, using less resource-intensive approximations of their numerical model
outputs. These hypotheses can later be validated on data, to increase resolu-
tion accuracy, at the cost of reduced interactivity.

The progressive access data model employed by VAPOR is based on the
energy, or information, compaction properties of the discrete wavelet trans-
form. An overview of wavelets, their suitability for compression of scientific
data sets, and the mathematical framework for much of the discussion in this
section is described in Chapter 8.

20.2.1 VAPOR Data Collection

To take advantage of VAPOR’s progressive access capabilities, a data
set must first be translated into VAPOR’s progressive access data format—
VAPOR Data Collection (VDC). A variety of command line tools supporting
common file formats and user-callable libraries are provided to facilitate trans-
lation. Each variable is transformed, one time step at a time, from the spatial
to the wavelet domain. The resulting wavelet coefficients are sorted based on
their information content—coefficients with larger magnitudes contain more
information—and distributed to a small, finite number of bins. The number
of bins, as well as the number of coefficients stored in each bin, is determined
by the user, subject to the constraint that the aggregate number of wavelet
coefficients in the bins equals the number of coefficients output by the wavelet
transform, which in turn equals the number of grid points.

The reconstruction of a variable from wavelet space requires the applica-
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tion of the inverse discrete wavelet transform. If all of the bins are used for
reconstruction, no information is lost (up to a floating point round-off). The
user may choose, however, to only include a subset of the bins in reconstruc-
tion, producing an approximation of the original data. While any combination
of bins might be used to reconstruct an approximation of the original variable,
the best results are obtained when the subset of bins used in reconstruction
are those containing the largest magnitude coefficients. This sub-setting of
wavelet coefficients is called the level-of-detail or simply LOD selection.

Each wavelet coefficient bin, for each variable, at each time step, is stored
in a separate file. This distribution of bins into different files provides some
flexibility in large data management. Files corresponding to bins with less in-
formation content might be kept on tertiary storage (e.g. tape), while smaller,
but higher information content bins can be kept on secondary storage (e.g. ro-
tating disk). By default, a VDC distributes wavelet coefficients into four LOD
bins, that are sized to offer compression rates of 500:1, 100:1, 10:1, and 1:1,
when the bins are combined for reconstruction. Thus, using lower-resolution
LODs can result in significantly reduced I/O and storage requirements.

To improve both the computational performance of the forward wavelet
transform (transformation to wavelet domain) and inverse wavelet transform
(transformation to spatial domain) operations themselves, and the perfor-
mance of data ROI subsetting, data volumes are decomposed into blocks
prior to the forward transformation. Blocks are individually and independently
transformed, sorted, and stored to files. The block dimensions are a user pa-
rameter. The default for the VDC of a 3D variable is 643, which empirically
strikes a reasonable balance between computational efficiency on cache-based
microprocessors, disk transfer rates, and provides enough degrees of freedom
for high rates of compression. This latter point warrants further explanation.
Because each block is treated independently, and the distribution of wavelet
coefficient bins are fixed for all blocks, the maximum compression rate possible
is a function of the block size. Larger blocks offer better a compression rate
at the expense of an increased computational cost and storage access when a
ROI is retrieved.

20.2.2 Multiresolution

The principal benefits of LOD selection are reduced I/O transfer times—
which often dominate analysis—as well as the opportunity for a reduction
in disk storage requirements if the lower information content wavelet coeffi-
cient bins are not stored. However, the reconstructed data contains the same
number of grid points as the orginal data, whether generated from an approx-
imating LOD, or losslessly reconstructed using all wavelet coefficients. Hence,
the CPU or GPU computational cost of processing a variable, as well as the
RAM requirements, are no less than those required for a conventional data
representation, and may easily overwhelm the resources of a desktop comput-
ing platform regardless of the LOD.
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Fortunately, an intrinsic property of the wavelet transform is multiresolu-
tion; an Nd signal is decomposed into dyadic hierarchy, where each level in
the hierarchy approximates the next, finer level using only the fraction 1

2d of
the sample points (see 8.4 for a detailed discussion). This property affords VA-
POR users two forms of quality control: the first form is LOD selection, based
on wavelet coefficient prioritization; and, second, resolution or refinement con-
trol, based on the grid sampling rate. LOD selection primarily impacts I/O,
while refinement control has implications for both primary storage (RAM)
and computation. Coarser grids have a smaller memory footprint, and can
substantially reduce memory requirements, as well as the computational and
graphical expense of many visual and non-visual analysis operations, whose
costs are proportional to the number of grid points.

The next concrete example illustrates the concepts of LOD and multires-
olution, and their respective impacts on computing resources. Assume a com-
puting mesh with 10243 grid points that are transformed into a VDC, resulting
in three levels of detail corresponding to compression rates of 1:1 (no compres-
sion), 10:1, and 100:1. The wavelet coefficients for each LOD reside in separate
files on a disk named lod2, lod1, and lod0, respectively. Moreover, the number
of coefficients stored in each file would be approximately 10243− 10243

10 − 10243

100 ,
10243

10 − 10243

100 , and 10243

100 , respectively. As described earlier, reconstruction of
our data using the coarsest approximation (100:1) requires reading the coef-
ficients from lod0, while the second coarsest approximation is reconstructed
from the coefficients from both lod1 and lod0, and so on. The choice of LOD
will determine how much data are read from a disk.

Due to the multiresolution properties of wavelets, a second form of data re-
duction can be had by performing an incomplete wavelet reconstruction, halt-
ing the inverse transform after the grid has been reconstructed to 5123, 2563,
or 1283 grid points, for example. A multiresolution approximation contains
fewer grid points than the original data, thus, resulting in reduced memory
and compute resources required to store and operate on the approximation.
Note that the grid resolution refinement selection is independent of the LOD.
However, regardless of the refinement level, higher level LODs will contribute
more information, leading to more a more accurate approximation.

20.3 Visualization-Guided Analysis

As an illustration of the visualization-guided analysis capabilities of VA-
POR, this section describes the workflow used in addressing a research prob-
lem in Magneto-Hydrodynamics (MHD) [6]. The data set explored is output
from an MHD simulation with a high Reynolds number, computed on a 15363

grid, with 16 variables, requiring 216GB per time step. It was expected that,
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at this resolution, geometric structures, known as current sheets, would form.
A current sheet is characterized by the magnitude of the electrical current
achieving local maxima along a 2D surface. While current sheets were ex-
pected to appear, it was not known exactly what shapes these surfaces would
take. There are theoretical reasons to expect that the current sheets could wind
into a rolled-up structure, i.e., a current roll; however, this phenomenon was
not observed in previous simulations. Direct volume rendering of one scalar
variable from the data, at full-resolution, without data reduction, would be
possible, but the demands on computing resources would be substantial. The
image in Figure 20.1(a) is a full-domain volume rendering of the current field
reconstructed from the VDC by reading only 1

100 of the available wavelet
coefficients and performing a partial inverse wavelet transform to produce a
grid with 1

64 the resolution of the original mesh (3843 grid points). Both the
reduction in grid resolution (saving computation and memory costs), and in
the wavelet coefficients used to reconstruct the variable from wavelet space
(saving I/O costs), were necessary for interactivity.

Through visual inspection of the highly compressed data involving the in-
teractive manipulation of viewpoints, transfer functions, and cutting planes,
a small ROI was identified, containing a current roll shown isolated in Fig-
ures 20.1(b) and ??(c). Once isolated, additional visualization and analysis
tools can be interactively applied in this smaller region, using both increased
grid resolution and LOD quality. In Figure ??(d), two contour planes are
shown, along with the magnetic field lines passing through the center of the
roll. The seeding location for these field lines was selected by picking locations
on the contour planes in regions of high current magnitude, near the center
of the current roll cross-section.

20.4 Progressive Access Examination

To further illustrate the effectiveness of VAPOR’s progressive access data
model, a qualitative comparison of VAPOR’s two data reduction techniques—
LOD and refinement level selection—are presented below. Two different data
sets are used for comparison: the MHD data discussed in the previous section,
and a numerical weather simulation of the severe atlantic storm, Erica [5],
computed on a 1300 × 950 × 50 grid. The MHD data set is used to demon-
strate the impact of data reduction on direct volume rendering, while the Erica
data set is used to demonstrate the impact to pathline integration in an un-
steady velocity flow field. Figure 20.2 shows a volume rendering of the original
MHD data (a), and data reduced by both LOD and resolution (b). Similarly,
Figure 20.4 shows the integration over 20 time steps of five randomly seeded
pathlines, computed from the original Erica data (a), and reduced data (b).

Figures 20.3 and 20.5 compare images generated with reduced MHD and
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(a) (b)

(c) (d)

FIGURE 20.1: Exploration of the current field of a 15363 MHD simulation. A
volume rendering of current magnitude generated using reduced data (a), an
isolated ROI exhibiting a current “roll-up” (b), a close up of the phenomenon
(c), and magnetic field lines passing through the center of the roll-up (d). The
images in (b)-(d) were generated with the highest refinement level and LOD
data.

Erica data, respectively. The top rows show images generated from data at
the highest refinement level, but with LODs corresponding to compression
rates of 10:1 (a), 100:1 (b), and 500:1 (c). Similarly, the bottom rows show
images generated from data at the highest LOD, but with refinement levels
corresponding to grids at 1

8 (d), 1
64 (e), and 1

512 (f) of the original resolution.
The reader can subjectively evaluate the quality of these images, keeping

in mind the substantial reductions in data involved. While the leftmost images
would obviously be preferable for publication purposes, many analysis oper-
ations might be suitable for enabling qualitative understanding, using highly
compressed data for visualization.
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(a) (b)

FIGURE 20.2: Volume rendering of an isolated ROI showing the magnitude
of the current field from a 15363 simulation. The original, unreduced data
are shown (left) along with data reduced by a combination of both LOD and
resolution (right). The corresponding reduction factors for LOD and resolution
coarsening are 10:1 and 8:1, respectively.

20.4.1 Discussion

In general, the accuracy of the reduced data depends strongly on the data’s
properties, in particular the degree of coherence between neighboring sam-
ples. However, the two examples presented above illustrate some principles
generally applicable in the visualization of large data sets. When performing
volume rendering (or similar visualizations, such as isosurface rendering, that
map data values to graphics primitives), there is little benefit to having grid
resolutions whose screen projection sampling rate exceeds, or even approaches,
that of the display device itself. Visual quality rarely improves by increasing
the refinement level once the projected voxels subtend a screen area smaller
than the screen pixel size. In such a case, little information is lost if resolution
is reduced, to afford interactivity.

Similarly, when performing an unsteady flow integration (or other opera-
tions requiring significant CPU processing on multiple volumes of data) it is
again valuable to perform the initial analysis and visualization interactively.
Interactivity can be obtained by using both lowered resolution and level of de-
tail, and also by reducing the time sampling rate. By performing visualization
and analysis on a small subregion, the quality impact of resolution, time sam-
pling and compression level can be assessed. The desired visualizations can
be previewed interactively at a lower accuracy by setting up the appropriate
parameters for a subsequent noninteractive session of sufficient accuracy, to
precisely illustrate the features of interest.
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(a) (b) (c)

(d) (e) (f)

FIGURE 20.3: Direct Volume Rendering of reduced MHD enstrophy data
(volume rendering of original data shown in Figure 20.2a). The images in the
top row were produced with the native grid resolution, but varying the LODs
with reduction factors of 10 : 1 (a), 100 : 1 (b), and 500 : 1 (c). The bottom
row used the highest LOD for all images, but varies the grid resolutions with
reduction factors of 8:1 (d), 64:1 (e), and 512:1 (f). Reduced LOD primarily
benefits I/O performance, while reduced grid resolution primarily benefits
memory, computation, and graphics.

20.5 Conclusion

VAPOR provides a desktop environment for the interactive exploration
of high-resolution numerical simulation outputs. The interactive exploration
of data sets, whose size would otherwise overwhelm desktop computing re-
sources, is enabled by the use of a variety of user-controllable data reduction
techniques. These include:

• compression ratio (LOD selection), which is in direct proportion to the
I/O performed;

• refinement level (resolution), which is proportional to processing time
(including graphics rendering time), and also, it can have a significant
impact on memory overhead, and;

• a time sampling rate and region size, both of which are in direct pro-
portion to both processing time and I/O time.
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(a) (b)

FIGURE 20.4: Pathlines from the time-varying velocity field of a simulation
of the atlantic storm Erica. Pathlines generated from the original, unreduced
data are shown (a), along with data reduced by a combination of both LOD
and resolution (b). The corresponding reduction factors for LOD and resolu-
tion coarsening are 10:1 and 8:1, respectively.

To maintain interactivity, users can explicitly manipulate the parameters
associated with all of these data reduction offerings provided by VAPOR.
When final, high-quality results are required, the parameters can be set for
possibly non-interactive visualization and performed without user supervision,
provided the computing platform has sufficient resources to handle the full
fidelity data.

In addition to these user-controllable mechanisms, VAPOR also makes
extensive use of data caching to avoid the unnecessary recalculation of previous
results, and, more significantly, to minimize the reading of data from secondary
storage.
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(a) (b) (c)

(d) (e) (f)

FIGURE 20.5: Pathline integration of five randomly seeded pathlines using
reduced storm simulation data. Pathlines generated with original data shown
in Figure ??. The images in the top row were produced with the native grid
resolution, but varying the LODs with reduction factors of 10:1 (a), 100:1
(b), and 500:1 (c). The bottom row used the highest LOD for all images, but
varies the grid resolutions with reduction factors of 8:1 (d), 64:1 (e), and 512:1
(f).
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