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This chapter presents three progressive refinement methods for data sampled
on a regular grid. Two of the methods are based on multiresolution: the grid
may be coarsened or refined as needed by dyadic factors. The third is based
on the energy compaction properties of the discrete wavelet transform, which
enables the sparse representation of signals. In all cases, the objective is to
afford the end-user the ability to make trade-offs between fidelity and speed, in
response to the available computing resources, when visualizing or analyzing
large data.
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8.1 Introduction

Fueled by decades of exponential increases in microprocessor performance,
computational scientists in a diverse set of disciplines have enjoyed unprece-
dented supercomputing capabilities. However, with the increase in comput-
ing power, comes more sophisticated and realistic computing models and an
invariable increase in resolution of the discrete grids used to solve the equa-
tions of state. A direct result of the increase in grid resolution is the profuse
amount of stored data. Unfortunately, the ability to generate data has not
been matched by our ability to consume it. Whereas microprocessor floating
point performance, combined with communication interconnect bandwidth
and latencies, largely determines the scale by which numerical simulations are
run, it is often primary storage capacities and I/O bandwidths that constrain
access to data during visualization and analysis. These latter technologies,
and I/O bandwidths, in particular, have not kept pace with the performance
advancements of CPUs, GPUs, or high performance communication fabrics.
For many visualization and analysis workflows, there is a bottleneck caused
by the rate at which data is delivered to the computational components of the
analysis pipeline.

This chapter discusses methods used to reduce the volume of data that
must be processed in order to support a meaningful analysis. Ideally, the user
should be able to trade-off data fidelity for increased interactivity. In many
applications, aggressive data reduction may have a negligible impact, or no
impact whatsoever, on the resulting analyses. The specific target workflow is
highly interactive, quick-look exploratory visualization enabled by coarsened
approximations of the original data, followed by a less interactive validation
of results using the refined or original data, as needed. This model and these
methods, which are referred to as progressive data access (PDA), are similar
to those employed by the ubiquitous GoogleEarthTM—coarsened imagery is
transmitted and displayed when the viewpoint is far away, and continuously
refined as the user zooms in on a region of interest.

The PDA approaches in this chapter are all intended to minimize the
volume of data accessed from secondary storage, whether the storage is a
locally attached disk, or a remote, network-attached service. Additionally,
the following properties of the data model are also deemed important: (1) the
ability to quickly access coarsened approximations of the full data domain; (2)
the ability to quickly extract subsets of the full domain at a higher quality; (3)
lossless reconstruction of the original data; and (4) minimal storage overhead.
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8.2 Preliminaries

A trivial approach to supporting PDA for regular grids is the general-
ization of 2D texture MIP mapping to higher dimensions. A MIP Map, also
referred to in the literature as an image pyramid, is a precalculated hierarchy
of approximations created by successively coarsening a 2D image, typically
reducing the sampling along each dimension by a factor of 2, with each pass.
Without loss of generality, if assuming a 3D grid of dimension N3, a series
of approximations is created of the dimensions (N2 )

3, (N4 )
3, (N8 )

3, and so on.
An unfortunate consequence of this simplistic tack, though, is the additional
storage required by each approximation. For a d-dimensional hypercube, the
fractional storage increase is given by:

J�

j=1

1

2dj
,

where J is the number of approximations in the hierarchy—an ostensibly small
multiplier, but one that may be unacceptable when N is large and multiple
variables and timesteps are involved.

In the following sections, there are more sophisticated methods than MIP
mapping to support PDA. The overall goal is to improve upon MIP mapping
by eliminating, or at least reducing, the additional storage required. The no-
tion of multiple resolutions—based on a hierarchical decomposition of the grid
sampling space—plays a role in all of the methods presented. The convention
adopted throughout this chapter is that the level in a multiresolution hierar-
chy is given by j, with jmin referring to the coarsest member of the hierarchy,
and jmax referring to the finest member. The total number of members is
jmax − jmin + 1. In general jmin = 0, but not always. A distinction is always
made when jmin is not zero.

8.3 Z-order curves

A space-filling curve is one that passes through all points of a 2-dimensional
square, or more generally, all points of a d-dimensional hypercube. In the
context of a regular grid of dimension Nd, where N = 2n, a space-filling curve
visits all vertices of the mesh exactly once, providing a mapping between 1D
and higher dimensional space. Here we will focus our attention on the 2D and
3D cases. The Morton space-filling curve, also referred to as the Z-order curve
due to its shape (see Figure 8.1), visits all vertices in the order of a depth-first
traversal of a quadtree (or octree in 3D) [8]. Figure 8.1(d) shows the complete
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FIGURE 8.1: The Z-order, or Morton, space-filling curve maps multi-
dimensional data into one dimension while preserving the locality of neigh-
boring points.
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Z-order curve traversal, starting at the grid point with coordinates (0, 0), of a
16× 16 2D mesh. When a third dimension is added, plane-adjacent pairs of Z
shapes are connected by a diagonal.

Informally, the property of Z-order curves that makes them appealing is
that, in contrast to a conventional row or column major order traversal of grid
vertices, the Z-order curve preserves the locality of data points; points whose
integer offsets are near each other along the Z-order curve are geometrically
close to each other, as well. Moreover, the grid points that are members of a
particular level of the quadtree (octree) hierarchy are identified in a straight-
forward manner.

If, instead of using a unit stride, one chooses a suitable non-unit value
to traverse the Z-order curve, s = 2d(jmax−j), then, all points can be visited
at any level j of the tree, while still preserving the locality of points. The
maximum number of levels in the hierarchy defined by the Z-order curve is
given by log2(N) + 1, thus, 0 ≤ j ≤ jmax = log2(N). The coarsened grid
corresponding to j = 0, in the Z-order curve decomposition, contains a single
point located at the origin of the original grid. Figures 8.1(a)-(d) show the
resulting curves when s = 64, 16, 4, and 1, respectively. Not shown is the
coarsest level: j = 0.

8.3.1 Constructing the Curve

The construction of the 1D Z-order curve from the the d-dimensional hy-
percube is accomplished by interleaving the bits of the binary representation of
each grid point index (i0, . . . id−1) to form an integer offset, z, along the curve.
If each dimension index, ik is expressed in binary with n bits as b0kb

1
k . . . b

n−1
k ,

then the 1D reference, z, containing nd bits, is constructed by interleaving the
bits of each d-dimensional index starting with the slowest changing dimension.
For example, in the 2D case with grid point addresses given by (i0, i1), i1 vary-
ing slowest, z would be given by the string of 2n bits: b01b

0
0 . . . b

n−1
1 bn−1

0 . The
curve offsets, z, are then sorted from smallest to largest to provide the depth-
first traversal order. This establishes a mapping from a point’s d-dimensional
address, (i0, . . . id−1), to a point’s offset along the Z-order curve, z.

8.3.2 Progressive Access

As noted, changing the Z-order curve stride, s, can restrict the visitation
of points in the tree up to a level j. More formally, a hierarchy of ordered sets
of grid point Z-order curve offsets can be constructed, such that:

S0 ⊂ S1 ⊂ . . . ⊂ Sjmax

where
Sj = {zj |zj = si, i ∈ Z, 0 ≤ si < 2djjmax},

s = 2d(jmax−j), and the cardinality |Sj | = 2dj .
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A progressive access storage layout can be affected simply by ordering the
data on disk from S0 to Sjmax , with the order of elements within each Sj

given by z. Any approximation level in the hierarchy can then be accessed,
reading only those points contained in Sj . An added benefit of preserving the
Z-ordering within each Sj is the locality of points. The data are effectively par-
titioned into blocks, which can offer substantially improved I/O performance,
over row (column) major ordering on block-based storage when subsets of the
data are read.

There is one problem with the scheme just described: data replication.
Each set Sj is a subset of Sj+1. To avoid data replication a set differences is
constructed, such that:

S�
j = Sj − Sj−1.

S�
j is then stored, instead of Sj . Reconstructing Sj from S�

j requires reading
all S�

i, where 0 ≤ i ≤ j, and forming the union Sj = S�
0 ∪ . . . ∪ S�

j . In each
of the Figures 8.1(a)-(d), a circle enclosed inside a square is used to denote a
grid point added through the union of the sets S�

j and Sj−1.
There are a few additional properties of the Z-order curve that are helpful

to support the construction and access of S�
j .

The level in the hierarchy that a point with Z-order curve index z belongs
to is given by:

j =

�
0 if z == 0,

jmax − �n
d � if z > 0,

(8.1)

where 2n is the largest power-of-two factor of z.
The cardinality of S�

j is

|S�
j | =

�
1 if j == 0,

2dj − 2d(j−1) if j > 0.
(8.2)

Finally, the z value from a point in the set S�
j can be reconstructed as:

z = (l + � l

2d − 1
�+ 1)2d(jmax−j), (8.3)

where l is the integer offset of the point within the set (recall set elements are
ordered by z).

When reordering data on disk from row (column) major order to Z-order
curve, Eq. 8.1 allows the user to walk the Z-order curve and determine what
point belongs to which set of S�

j When reconstructing row (column) major
order from Z-order curve data stored on disk, Eq. 8.3 provides a point’s z
offset based on its position in S�

j .
There are a few other items worth noting. No floating point calculations

are performed on the data in the scheme described above and the storage of
the data is simply reordered in a manner that lends itself to progressive access
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and subregion extraction. Hence, the reconstructed data at the highest level of
the hierarchy are bit-for-bit identical to the original data. In general, this will
not be true of other progressive access models. A less desirable aspect of the
approach is that data coarsening is performed through simple subsampling.
The quality of the coarsened approximations will not be as high as when
achieved by other methods.

8.4 Wavelets

In the preceding section, the Z-order curve offers a convenient way to create
and access a multiresolution hierarchy composed of the nodes of a gridded
hypercube. While the method allows for bit-for-bit identical reconstruction of
the original grid and does not impose any additional storage overhead, the
restriction to the grids with regular symmetry and power-of-two dimensions,
or the crudeness of coarsened approximations created by sub-sampling, may
prove limiting. In this section, both of these shortcomings are addressed, but
they give up exact, bit-for-bit reconstruction.

Consider the following set of samples from a 1D signal:

c3[n] = [1 3 3 5 9 7 7 5]

The eight samples can be approximated with pair-wise, unweighted averaging
to produce signal at half the resolution:

c2[
n

2
] = [2 4 8 6].

The samples in c2[
n
2 ] are constructed by

cj−1[i] =
1

2
(cj [2i+ 1] + cj [2i]). (8.4)

Now consider the signal constructed with

dj−1[i] =
1

2
(cj [2i+ 1]− cj [2i]). (8.5)

So, for the d2[
n
2 ] example:

d2[
n

2
] = [1 1 −1 −1].

The signal d2[
n
2 ], when combined with c2[

n
2 ], provides a way to reconstruct

the original c3[n]:

cj [2i] = cj−1[i]− dj−1[i],

cj [2i+ 1] = cj−1[i] + dj−1[i].
(8.6)
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The samples in cj are referred to as approximation coefficients, and those
in dj , which represent the differences or the error introduced by averaging two
neighboring data values, are referred to as detail coefficients. The calcula-
tions given by Eqs. (8.4, 8.5) can be recursively applied to cj until a single
approximation coefficient is left—the average of all the samples in our original
signal—and, in this example, seven detail coefficients:

c0, d0...2 = [5 2 1 −1 1 1 −1 −1]

Thus, a linear transform has been applied to the original signal that allows
a reconstruction of an approximation with 1, 2, 4, or 8 samples, but with-
out any storage overhead. In the context of data read from disk, the coarsest
approximation, c0, can be retrieved by reading a single sample, the next ap-
proximation level, c1, by reading one additional coefficient, d0, and applying
Eq. (8.6), and the next, by reading two more coefficients, and so on. Multiple
dimensions can be easily generalized by averaging neighboring points along
each dimension to generate approximation coefficients, and generate detail
coefficients by taking the difference between the approximation coefficients
and each of the points used to find its average.

Mathematically, this is the one-dimensional, unnormalized, Haar wavelet
transform. The Haar wavelet transform, and other wavelet transforms that are
discussed later, constructs a multiresolution representation of a signal. In one
dimension, each multiresolution level j contains, on average, half the samples
of the j+1 level approximation, with coarser level samples created by averag-
ing finer level samples. Note, while the Haar transform exhibits what is known
in the digital signal processing world as the property of perfect reconstruction,
due to limited floating point precision the signal reconstructed from the cj and
dj coefficients will not, as was the case with the Z-order curve, be an exact
copy of the original signal. Moreover, even if the input signal consists entirely
of the integer data the division by two in Eq. (8.4) will result in floating point
coefficients. However, integer-to-integer wavelet transforms do exist [2], but
they are not discussed here.

Figure ?? shows a qualitative comparison of a 1D sampling of the x-
component of vorticity obtained from a 10243 simulation by Taylor Green tur-
bulence [7]. The original signal is seen in ??(a). The signal generated by nearest
neighbor sampling (analogous to Z-order curve approximation) at 1/8th reso-
lution is shown in ??(b), and at the same coarsened resolution, approximated
with the Haar wavelet (??c).

Eqs. (8.4)-(8.6) provide everything that is needed to support a PDA scheme
based purely on a multiresolution hierarchy, not suffering from the limitations
of the Z-order curve, but giving up bit-for-bit identical reconstruction. One
drawback of both the Z-order curve and the wavelet based multiresolution
approach is that they fail to take advantage of any coherence in the data.
Better approximations of a function can be achieved for a given number of
coefficients, by further exploiting some of the properties of wavelets.
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FIGURE 8.2: PDA based on multiresolution. The original signal containing
1024 samples (a), reduced to 1/8th resolution using: subsampling, analogous
to the Z-order curve (b); and the Haar wavelet approximation coefficients (c).

8.4.1 Linear Decomposition

Often it is advantageous to represent a signal or function f as a superpo-
sition:

f(t) =
�

k

akuk(t) k ∈ Z, a ∈ R, (8.7)

where a’s are expansion coefficients, and uk(t)’s are a set of functions of time,
t, that form a basis for L2—the space of square, integrable (finite energy) func-
tions. If, for example, uk’s are complex exponentials, then the expansion is a
Fourier series of f . More generally, if the basis functions, uk(t), are orthogonal,
that is if

�uk(t), ul(t)� =
�

uk(t)ul(t)dt = 0 l �= k (8.8)

then the coefficients ak can be easily calculated by the inner product:

ak = �f(t), uk(t)� =
�

f(t)uk(t)dt. (8.9)

The wavelet expansions of signals are also superpositions of basis functions
but they are represented as a two-parameter expression:

f(t) =
�

k

cjmin,kφj,k(t) +
�

j

�

k

dj,kψj,k(t), (8.10)

where cj,k and dj,k are again real-value coefficients. φj,k(t) and ψj,k(t) are
the scaling and wavelet basis functions, respectively. The parameterization of
time (or space) is provided by k, while frequency or scale, not coincidentally,
is parameterized by j.

Several properties of wavelets and the above wavelet expansion are appli-
cable to all wavelets discussed in this section:

1. The wavelet expansion computes efficiently. For discrete f(t), the upper



30 High Performance Visualization

bound on the parameter j is log2(N), where N is the number of samples
in f . Similarly, for many wavelets both φj,k(t) and ψj,k(t) have compact
support and are thus zero-valued outside of a small interval of t. Thus
the expansion is computed with only a handful of multiplications and
additions, making its complexity O(N). The same is true for the wavelet
transform used to compute cj,k and dj,k. Compare this to O(Nlog2(N))
complexity for the Fourier expansion.

2. Unlike the Fourier transform, the wavelet transform localizes in time
(space) the frequency information of a signal. Most of the information
or energy of a signal is represented by a small number of expansion
coefficients (a property exploited later for progressive data access).

3. Finally, Eq. (8.10) provides a multiresolution decomposition of f . The
first term of the right-hand side of the equation describes a coarsened,
low-resolution approximation of f , while the second term, for increasing
j, provides finer and finer details—that represent the missing informa-
tion not contained in the first term. Another view is that the first term
contains the low frequency components of f , while the second term pro-
vides the high frequency components of f . Hence, the labels are applied:
approximation and detail to the coefficients, cj and dj , respectively.

8.4.2 Scaling and Wavelet Functions

Up to this point, scaling and wavelet functions have been discussed with-
out formally defining them. Unlike the Fourier basis functions, the complex
exponentials, the wavelet and scaling functions are an infinitely large family of
functions. Here, the discussion will strictly pertain to normalized, orthogonal,
or orthonormal, families of wavelets as defined by the relations:

�φj,k(t),φj,l(t)� = δ(k, l)

�ψj,k(t),ψj,l(t)� = δ(k, l)

�φj,k(t),ψj,l(t)� = 0





for all j, k, and l, (8.11)

where δ(k, l) is 1 for k = l, otherwise δ(k, l) is 0.
The multiresolution properties of the wavelet expansion arise from the

scaling function and the ability to recursively construct this basis function
from a canonical version of itself. That is

φ(t) =
�

n

h0[k]
√
2φ(2t− n) n, k ∈ Z. (8.12)

Eq. (8.12) is a dilation equation; it shows how to construct the scaling
function, φ(t), from the superposition of scaled, translated, and dilated copies
of itself. The translation (t − n) shifts φ(t) to the right. The multiplier 2t
narrows (dilates) φ(t), and

√
2 scales the function. In other words, φ(t) is
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expressed as a linear expansion, similar in form to Eq. (8.7), but by using
itself as a basis! By convention, the expansion coefficients are relabeled from
ak to h0[k].

For the Haar basis function discussed in the beginning of 8.4, the canonical
form of φ(t) is:

φ(t) =

�
1 0 ≤ t < 1

0 otherwise
(8.13)

Thus, the Haar scaling function is a box of unit height over the interval [0, 1).
The expansion coefficients, h0[k], for the Haar scaling function are h0[0] =
h0[1] = 1/

√
2.

Using shifted, scaled and dilated versions of the scaling function φ(t) alone,
we can construct a multiresolution hierarchy of f(t). However, much like the
first attempt with the Z-order curve, this leads to more replications. For these
and other reasons that are beyond the scope of this text, the wavelet expansion
includes a second basis function, ψ(t), that provides a means to capture the
information that is missing from the approximation based on φ(t).

Similar to the scaling functions, the wavelets are also defined by the canon-
ical scaling function:

ψ(t) =
�

n

h1[k]
√
2φ(2t− n). (8.14)

Here, h1 are a different set of expansion coefficients from h0. Without proof,
the orthogonal wavelets h0 and h1 are related to each other by

h1[n] = (−1)nh0(N − 1− n), (8.15)

where N is the support size of h0.
Thus, for the Haar wavelet, the non-zero coefficients in Eq. (8.14) are

h1[0] = 1/
√
2 and h1[1] = −1/

√
2. The canonical Haar wavelet function is

therefore:

ψ(t) =






1 0 ≤ t < 1/2

−1 1/2 ≤ t < 1

0 otherwise

(8.16)

A multitude of wavelet families exist, each with a variety of parameteri-
zations. A reasonable question to ask is: If Haar wavelets possess all of the
multiresolution properties required, why consider other wavelets? Again, an
in-depth treatment is beyond the scope of this text, and the remarks will be
limited to those properties related only to the goals of this discussion.

The tendency of wavelet transform expansion coefficients is to quickly be-
come small in magnitude [4]. Many signals can be accurately approximated
by only a small number of coefficients (see 8.4.4). The Haar wavelets, con-
structed from box functions, are the most efficient in representing signals that
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are piecewise-constant; spans of the signal that are constant-valued between
dyadic points (multiples of powers of two) can be represented by approxi-
mation coefficients alone, and without any need for detail coefficients. While
smoother signals, in fact, any signal in L2, can be represented by the Haar
basis, the number of non-zero detail coefficients will, in general, be large. To
represent signals sparsely, a basis is required whose properties, in some way,
match those of the signal. One measure of the wavelet function’s ability to
match a signal is given by the number of vanishing moments, p, where,

�
xkψ(t)dt = 0 for 0 ≤ k < p, (8.17)

which shows that ψ is orthogonal to any polynomial of degree p − 1. If f
resembles a Taylor polynomial of degree k < p over some interval then the
detail coefficients of the wavelet transform of f will be small at fine scales 2j .
For this reason much research has gone into the design of wavelets that have
support of minimum size for a given number of vanishing moments, p. Not
surprisingly, within a family of wavelets, increasing vanishing moments comes
at the cost of wider support.

8.4.3 Wavelets and Filter Banks

Now that the wavelets and wavelet transforms have been reviewed, this
subsection explores the application of progressive data access from a digital
filter bank point of view. The discussion of this point of view is necessary
because the digital filter bank matches the discrete, gridded data better than
the function expansion point of view. Now, instead of a continuous function
f(t), consider a discretely sampled, finite function, x[n], 0 ≤ n < N , where N
is the total number of samples. To compute the wavelet expansion coefficients
of Eq. (8.10) there is no need to actually evaluate the scaling or wavelet func-
tion. The normalized scaling and wavelet expansion coefficients of Eqs. (8.12)
and (8.14)—h0 and h1—are the only coefficients needed to compute cj,k and
dj,k. Without proof, the following relations are known as the Discrete Wavelet
Transform (DWT):

cj,k =
�

n

h̃0[2k − n]cj+1[n], (8.18)

dj,k =
�

n

h̃1[2k − n]cj+1[n], (8.19)

where h̃0(n) = h0(−n) and h̃1(n) = h1(−n). These equations show that the
approximation and detail coefficients for a level j are computed via a simple
two channel filter bank, recursively applied in a process known as analysis (see
Figure ??a). Analysis is equivalent to convolving the input signal, cj+1, with
time-reversed copies of the filter coefficients, h0[−n] and h1[−n], and then
downsampling the filtered signal by discarding every odd term. The analysis
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filter implemented by h0 is a low-pass filter, and the one implemented by h1

is a high-pass filter. Thus the filters split the signal into its low frequency and
high frequency components. The cascade of outputs formed by each iteration,
or pass, of the filter pairs divides the frequency spectrum into a logarithmic
sequence of bands. By downsampling the results of each convolution, the total
number of non-zero coefficients is held constant through each pass.
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(b)

FIGURE 8.3: The analysis of the input signal, cj , is performed by a cascade
of convolutions, followed by downsampling steps in (a). Reconstruction of cj
is performed by a cascade of upsampling, followed by convolution steps in a
process known as synthesis in (b).

A reconstructed signal, ĉj,k, is obtained with the Inverse Discrete Wavelet
Transform (IDWT) in a process known as synthesis, where,

ĉj,k =
�

n

g0[k − 2n]cj−1[n] + g1[k − 2n]dj−1[n]. (8.20)

Analogous to Eqs. (8.18) and (8.19) the IDWT is equivalent to upsampling
cj and dj by the introduction of zeros in every other sample and summing
the convolutions of cj and dj with g0 and g1, respectively, as illustrated in
Figure ??(b). To ensure that ĉj,k = cj,k, the inverse transform must exhibit
the property of perfect reconstruction. The reconstruction filters, g0 and g1,
must be chosen accordingly. But how does one know that g0 and g1 even exist?
Conveniently, for orthogonal filters the reconstruction (synthesis) filters do
exist and are related to the analysis filters by:

g0[n] = h0[n] = h̃0[N − n],

g1[n] = h1[n] = h̃1[N − n].
(8.21)

An obvious question that arises is this: Given a signal x[k], how are the
initial cjmax,k computed? Fortunately, if the samples of x[k] are computed
above the Nyquist rate, it can be assumed that cjmax,k ≈ x[k].
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8.4.4 Compression

Now, all the machinery is in place to provide a multiresolution representa-
tion of a 1D sampled signal. The DWT transforms x[n] into a wavelet space
sequence of coefficients, cj,k and dj,k. From the wavelet space representation
there is a coarsened approximation of x[n] given by cj=0 that can progressively
be refined by adding a resolution by way of Eq. (8.20).

The real power of the wavelet transform comes from the aforementioned
ability of wavelets to concentrate energy into a small number of coefficients.
Assume a discrete signal, x[n], expressed as the expansion

x[n] =
K−1�

k=0

akuk[n],

for some set of compactly supported basis functions uk. The goal is to find an
approximation of x[n], such that,

x̃[n] =
K̃−1�

k=0

ãkuk[n],

where K̃ < K. Moreover, for a given K̃, it is desired that the approximation
x̃[n] to be the best possible approximation for x[n] by some error metric. One
possibility is ||x[n]− x̃[n]||p < � for some norm, p. For an orthonormal basis,
for p = 2,

||x[n]− x̃[n]||22 =
K−1�

k=K̃

(aπ(k))
2, (8.22)

where π(k) is a permutation of 0 . . .K − 1 such that

|aπ(0)| ≥ . . . ≥ |aπ(K−1)|,

and x̃ uses the coefficients corresponding to the first K̃ − 1 elements of π(k).
Formally:

ãk =

�
ak if π(k) < K̃,

0 otherwise.

Thus, the L2 error of x̃[n] is given by the sum of the square of the coefficients
a[k] that are not included in the expansion of x̃[n]. To minimize the L2 error for
a given K̃, ak is sorted by decreasing the magnitude and only the K̃−1 largest
coefficients are included in the approximation. Alternatively, if a particular � is
wanted, Eq. (8.22) allows the calculation of how many and which coefficients
can be discarded to ensure ||x[n] − x̃[n]||p < �. Note, for any a[k] = 0 its
exclusion introduces no error in the approximation.

Eq. (8.22) sheds some light on the choice of wavelet. As discussed earlier
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(see Eq. 8.17), a wavelet possessing a higher number of vanishing moments
will permit the compaction of more energy (information) into fewer expansion
coefficients. Figure 8.4 qualitatively compares the compression of a signal by
a factor of 8, by using wavelets with different numbers of vanishing moments.
For ease of comparison, Figures 8.4(a) and 8.4(b) reproduce Figures (??(a)
and ??(b), respectively. Results using the Haar Figure 8.4(c) and Daubechies
D4 Figure 8.4(d), wavelet are shown with 1 and 2 vanishing moments, respec-
tively. Note the “blockiness” resulting from the box shape of the Haar wavelet.
Also note that while the multiresolution approximation of Figure 8.4(b) may
appear visually more appealing than Figure 8.4(c), many extreme values in
the original signal are lost, which is the result of the cascade of applications
of the low-pass scaling filter.

Finally, unlike the pure multiresolution approaches based on Z-order curve
and wavelets, an arbitrary number of approximations are now produced. In
the extreme case, the approximation is refined one coefficient at a time.

8.4.5 Boundary Handling

Finite length signals present a couple of challenges that have been ignored
until this point. Consider the application of the DWT to a signal x[n] with
a low-pass filter h of length L = 4. By Eq. (8.18) the computation of c[0] is
given by

c[0] = h̃[3]x[−3] + h̃[2]x[−2] + h̃[1]x[−1] + h̃[0]x[0].

But, for a finite signal, the samples x[−3], x[−2], and x[−1] do not exist! One
simple solution is to extend x[n] so that it is defined for n < 0 and n ≥ N .
There are a number of choices for the extension values, such as zero padding
or repeating the boundary samples, each with its own set of trade-offs. In the
general case, however, if the input signal, x, is extended, creating a new input
signal, xe of length Ne > N , the resulting output after filtering and downsam-
pling no longer has exactly N non-zero and non-redundant approximations
and detail coefficients. Moreover, perfect reconstruction of xe requires all of
the Ne coefficients. Due to downsampling in the case of the DWT, each iter-
ation of the filter bank requires an extension of the incoming approximation
coefficients. For a 1D signal, this overhead may not be significant, but later,
when moving on to 2D and 3D grids, the additional coefficients can consume
a substantial amount of space.

A filter bank that is nonexpansive is more preferable, as it preserves the
number of input coefficients on output, and does not introduce discontinuities
at the boundaries. The solution is the employment of symmetric filters com-
bined with a symmetric signal extension. Only the case of signals of length
N = 2n, and odd length filters where the symmetry is about the center bound-
ary coefficients, is considered here. For an extensive discussion on symmetric
filters of even length, which introduce considerably more complexity, or han-
dling N �= 2n, see [12, 5]. For clarity of exposition, assume that the filter is
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FIGURE 8.4: A test signal (a) with 1024 samples and a multiresolution ap-
proximation, (b), at 1/8th resolution, reproduced from Figure ??. The test
signal reconstructed using 1/8th of the expansion coefficients with the largest
magnitude from the Haar, (c), and Daubechies 4-tap wavelet, (d), respectively.
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whole-sample symmetric about h[0]. That is, h[n] = h[−n], and h[0] is not
repeated. For example, if L = 3, the center point is h[0], and h[−1] = h[1].
Moreover, the input signal must be made a whole-sample symmetric about the
first (n = 0) and last (n = N − 1) samples. The motivation for this symmetry
is straightforward: the output samples for n < 0 and n ≥ N are redundant
and need not be explicitly stored. Consider the calculation in a general lin-
ear transform of the expansion coefficient a[−1], by the convolution of x with
h[−n] for whole-sample symmetric x, and h, with L = 3:

a[−1] = h[0]x[−2] + h[1]x[−1] + h[2]x[0].

Due to symmetry, h[n] = h[−n], and x[n] = x[−n]. Therefore:

a[1] = a[−1] = h[0]x[2] + h[1]x[1] + h[2]x[0],

and a[−1] is redundant and need not be explicitly stored!
Things become a little more complicated with the DWT, which operates as

a dual channel convolution filter, followed by downsampling. Here, centering
the filter must be done carefully for each channel, such that symmetry is
preserved after downsampling, and the total number of coefficients output by
the two channels, equals the number of input coefficients. For even N , each
channel outputs exactly N/2 samples.

Symmetric filters combined with a symmetric signal extension provide a
straightforward mechanism for dealing with finite length signals and the DWT.
Unfortunately, with the exception of the Haar wavelet, there are no orthogo-
nal wavelets with compact support possessing both the property of symmetry
and perfect reconstruction. The solution to this dilemma is the relaxation of
the orthogonality requirement and the introduction of biorthogonal wavelets.
For biorthogonal wavelets, the properties of Eq. (8.11) no longer hold. Differ-
ent analysis scaling and wavelet basis functions, φ̃(t) and ψ̃(t), and synthesis
scaling and wavelet basis, φ(t) and ψ(t), must be introduced. Similarly, new
analysis, h̃0 and h̃1, and synthesis filters, g0 and g1, will appear.

From a filter bank perspective, h1 no longer relates to h0 by a simple
expression. However, the following cross relationship between synthesis and
analysis filters hold:

h̃0[n] = (−1)ng1(N − 1− n), g0[n] = (−1)nh̃1(N − 1− n), (8.23)

where N is the support size of the filter.
With the analysis filters no longer related to each other by Eq. (8.15), the

support of these respective filters need not be the same. The support sizes of
h̃0 and h̃1 are then denoted as L0 and L1, respectively, leading to new analysis
equations:

cj,k =

(L0−1)/2�

n=−(L0−1)/2

h̃0[n]cj+1[2k − n] (8.24)
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dj,k =

(L1−1)/2�

n=−(L1−1)/2

h̃1[n]cj+1[2k − n+ 1] (8.25)

Note that Eq. (8.24) processes the even samples of cj+1, while Eq. (8.25)
processes the odd samples—a necessity for nonexpansive output [12].

Because of the shift in the inputs to the analysis equation, a new synthesis
equation is also necessary, which must shift the d[n] coefficients:

ĉj,k =
�

n

g0[k − 2n]cj−1[n] + g1[k − 2n− 1]dj−1[n] (8.26)

As already noted, the correct behavior of Eqs. (8.24) and (8.25) is predi-
cated on treating the input signal, cj+1[n], as exhibiting whole-sample symme-
try about the left and right boundary. Perfect reconstruction from Eq. (8.26)
requires a mixture of whole-sample and half-sample symmetry, where the point
of symmetry lies halfway between two samples. Signals with the left bound-
ary, half-sample symmetry are symmetric about the non-integer point − 1

2 ,
while right boundary, half-sample symmetric signals are symmetric about the
point N − 1

2—for the left boundary, x[−1] = x[0], x[−2] = x[1] and so on.
For Eq. (8.26), the left and right boundaries of c[n] and d[n] must be made
whole-sample symmetric, respectively, while the right and left boundaries of
c[n] and d[n] must be half-sample symmetric, respectively. Lastly, for both
the symmetric analysis filters, h̃0[n] and h̃1[n], and the symmetric synthesis
filters, g0[n] and g1[n], the filters have a zero value for n < (L − 1)/2 and
n > (L− 1)/2, where L is the support size of the filter.

Although symmetry is gained and the number of inputs and output are
preserved, by giving up orthogonality, other important properties are lost.
Most significantly, Eq. (8.22) no longer holds, and the L2 error between a signal
x and its approximation x̃ can no longer be determined by the coefficients (not
included in the construction of x̃). Nevertheless, the L2 error, introduced in
the reconstruction after discarding coefficients, is still minimized by discarding
the coefficients of smallest magnitude.

Figure 8.5 shows plots of the Cohen-Daubechies-Feauveau (CDF) 9/7
biorthogonal synthesis and the analysis functions. Note the symmetry in all
of the functions. Table 8.1 provides the filter coefficients for the CDF 5/3 and
9/7 normalized, biorthogonal wavelets. These filters are the foundation for
the JPEG2000 image compression standard. The reader is cautioned that the
naming of the CDF family of biorthogonal wavelets is inconsistent in the liter-
ature. Here, the naming convention based on the support size in the low-pass
analysis and synthesis filters, respectively (e.g., CDF 9/7), is adopted. Other
authors use a naming scheme based on the number of analysis and synthesis
filter vanishing moments, respectively (e.g., bior4.4).
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FIGURE 8.5: The CDF 9/7 biorthogonal wavelet and scaling functions: analy-
sis scaling (a) and wavelet functions (b), and synthesis scaling (c) and wavelet
functions (d).

TABLE 8.1: Biorthogonal wavelet filter coefficients
for the CDF 5/3 (top) and 9/7 (bottom) wavelets

p n h0[n] g0[n]
2 0 1.06066017177982 0.70710678118655

−1, 1 0.35355339059327 0.35355339059327
−2, 2 -0.17677669529663 0

4 0 0.852698679008894 0.788485616405583
−1, 1 0.377402855612831 0.418092273221617
−2, 2 -0.110624404418437 -0.0406894176091641
−3, 3 -0.023849465019557 -0.0645388826286971
−4, 4 0.037828455507264 0.0

8.4.6 Multiple Dimensions

Extending the 1D wavelet filter bank to multiple dimensions is straight-
forward. The 1D analysis filter is simply applied along each dimension is il-
lustrated in the 2D example in Figure 8.6. Thus, for a M × N grid, a single
pass of the 2D DWT yields, on average MN

4 approximation coefficients and
3MN

4 detail coefficients. For 3D data, seven times as many detail coefficients
as approximation coefficients are generated for each iteration of the DWT.

8.4.7 Implementation Considerations

There are two possible approaches used to construct a PDA model, based
on the forward and inverse DWT. A multiresolution hierarchy can be con-
structed, just like with the Z-order space-filling curve, and by exposing the
scale parameter, j, in Eq. (8.10) the grid may be coarsened or refined by fac-
tors of 2d. This approach is called frequency truncation. Each iteration of the
analysis filters uses the normalized coefficients, provided in Table 8.1, which
scales the amplitude of the approximation coefficients by

√
2.0. If the approx-

imation coefficients are used as an approximation of the original signal, this
scaling should be undone by multiplication by 2−1/j , where j is the number of
iterations of the analysis filter. Alternatively, the wavelet expansion represen-
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FIGURE 8.6: On the left, (a) shows a single pass of the 2D DWT resulting
in one set of approximation coefficients, and three sets of detail coefficients.
The right side of the figure (b) shows the resulting decomposition after two
passes of the DWT. As each coefficient is the result of two filtering steps, one
along each dimension, the superscripts in (a) and (b) indicate highpass, H, or
lowpass, L, filtering.

tation’s power can be exploited to concentrate most of a signal’s information
content into a small number of expansion coefficients. This approach is called
coefficient prioritization. With either method, a number of practical imple-
mentation issues arise.

8.4.7.1 Blocking

The multi-dimensional DWT, discussed in 8.4.6, can be applied directly to
a d-dimensional grid. However, for high-resolution grids, there are a number of
reasons for considering decomposing the grid into a collection of smaller blocks
and applying the DWT to each individual block. Computational efficiency is
one consideration. Significantly improved performance may be achieved on
cache-based microprocessors by operating on a collection of smaller blocks
that better accommodate the memory hierarchy rather than one large, single
volume. The second reason, and perhaps the more compelling one, is efficient
region extraction. For many visualization workflows—such as drawing a cut-
ting plane through a 3D volume or zooming in and volume rendering a small
subregion of a larger volume—only a subset of the data is required. By de-
composing the volume into blocks, it is possible to access (from storage) only
those blocks that intersect the region of interest. The merits of data blocking
with regard to I/O are discussed in Hierarchical and Geometrical Methods in
Scientific Visualization [9].

The best choice of block size is somewhat application dependent. Given
the dyadic nature of the wavelet, and the complexities of boundary handling
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discussed in 8.4.5, power-of-two dimensions are sensible. As each pass of the
DWT reduces the number of approximation coefficients by half along each
dimension, larger block sizes permit more passes of the DWT resulting in a
deeper multiresolution hierarchy. A deeper hierarchy offers more refinement
levels for a progressive access scheme based on frequency truncation. Simi-
larly, if coefficient prioritization is employed, more coefficients present greater
degrees of freedom for compression. However, if the block size is too large, the
goal of performing efficient region extraction and computational performance
may be defeated. As a reasonable compromise for 3D grids, the suggested
block sizes are 643 or 1283.

For data that is not block-aligned, padding of the boundary blocks is re-
quired. Care should be taken to use an extension strategy that does not in-
troduce sharp discontinuities. Constant, linear extrapolation, or symmetric
extension, generally produces reasonable results.

8.4.7.2 Wavelet Choice

The advantages of symmetric, biorthogonal wavelets have been discussed;
and filter coefficients for two wavelets commonly used have been provided in
image compression applications in 8.4.5. Other biorthogonal wavelets possess-
ing more vanishing moments and, therefore, greater information compaction
capability also exist at the cost of additional filter taps. It is worth noting that
while filters with better energy compaction capabilities may yield sparser rep-
resentations, the additional filter coefficients incur additional computational
cost. Also, the wider the filter the greater the number of input coefficients
required, which may limit the possible number of cascades of the DWT. For
example, with a block of dimension 643 after three stages of the DWT, there
are 83 approximation coefficients—too few for another pass with the nine-
tap CDF9/7 filter, but sufficient for one more stage of the narrower, five-tap
CDF5/3 filter.

8.4.7.3 Coefficient Addressing

An important attribute of regular grids is the implicit addressing of grid
vertices. For example, each vertex in the grid can be addressed by an integer
index, (i, j, k) in 3D, whose offsets can be implicitly determined by the serial-
ized storage order. Therefore, only the sampled field value for each grid point
needs to actually be stored. The implicit addressing of expansion coefficients is
easily preserved during storage with frequency truncation. The coefficients are
simply written in the order that they are output from each stage of the filter
bank. With coefficient prioritization, however, the coefficients must be ordered
by their information content. Their addresses are no longer implicit by their
position in the output stream, and must be explicitly preserved. The number
of bits required to uniquely address each of the N expansion coefficients is
log2(N), which introduces a sizeable storage overhead.
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Consider, however, binning the N expansion coefficients output by the
DWT (which will generically refer to as c[k]) into a collection of P sets,

Sp = {cπ(i)|C(p− 1) ≤ i < C(p), 0 ≤ i < N − 1}, (8.27)

where C(0) = 0, C(p ≥ 1) =
�p

1 |Sp|, and, as before π(i) is a permutation
of 0 . . . N − 1 such that |cπ(0)| ≥ . . . ≥ |cπ(N−1)|. Then, if within each set
Sp, the expansion coefficients are stored in their relative order of output from
the filter bank, the addresses of the coefficients need only be stored for sets
S1 . . . SP−1. The addresses of the elements of SP can be inferred from the
addresses of S1 . . . SP−1. By keeping track of the ordered set of addresses not
found in S1 . . . SP−1, the lowest address not found in S1 . . . SP−1 is the address
of the first coefficient found in SP and so on. If |SP | is sufficiently large, the
storage savings can be considerable.

8.4.8 A Hybrid Approach

Frequency truncation and coefficient prioritization each have their
strengths and weaknesses. Frequency truncation preserves the implicit order-
ing of grid vertices, thereby imposing minimum storage overhead, but it offers
only a very coarse grain control over the the level of detail available; incre-
menting or decrementing the j scaling parameter by one changes the number
of grid points by a factor 2d. Furthermore, unlike coefficient prioritization,
all coefficients are treated equally regardless of their contribution to the sig-
nal. On the other hand, though, coefficient prioritization allows for arbitrary
control over level of detail, and generally offers better approximations for a
given bit budget, but prioritization requires additional storage to keep track
of coefficient addresses. Perhaps, a less obvious difference between the two
schemes is that, by virtue of possessing fewer grid points, multiresolution ap-
proximations (frequency truncation) benefit all the resources of the visualiza-
tion pipeline including: physical memory, floating point calculations, and I/O.
Frequency truncation, on the other hand, only benefits the transmission of
the data (e.g., access to secondary storage). Once a signal is reconstructed—
albeit even if from fewer expansion coefficients than samples in the original
signal—the number of samples in the reconstructed signal is the same as for
the original signal. After the reconstruction is finished, there is no further
realized benefit of the wavelet expansion.

The merits of both methods may readily be combined with little or no
additional effort. By allowing control over both the j parameter in Eq. (8.26),
which controls the resolution, and (if the coefficients are binned by their in-
formation content) the p parameter, then, Eq. (8.27) controls the expansion
coefficients used in reconstruction.
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8.4.9 Volume Rendering Example

Figure 8.7 shows at varying approximations a direct volume rendering of an
enstrophy field derived from a subregion of a 10243 isotropic and homogeneous
Taylor Green (TG) incompressible turbulence simulation [7]. The original data
is shown in Figure 8.7(a). Approximations based on coefficient prioritization,
using reduction factors of 1

500 ,
1

100 , and
1
10 , are shown in Figures 8.7(b)-8.7(c),

respectively. The data was decomposed into 1283 blocks, and transformed with
the CDF9/7 wavelet.

8.5 Further Reading

The presentation on Z-order curves and their application in progressive
data access is based almost entirely on the work of Pascucci and Frank. We
refer the reader to their papers for further details on the method, suggested
implementation strategies, and a discussion of their results with real data sets
and applications [10, 9].

Wavelets are a relatively new field in mathematics with a wealth of applica-
tions related to data analysis that go far beyond progressive data access. Here
we have only scratched the surface on their theory and their capabilities. For
the interested reader, an excellent introduction on wavelets and wavelet trans-
forms may be found in the books by Burrus et al. [1] and Stollnitz, et al. [11].
For a deeper understanding we recommend the authoritative books by Mal-
lat [6], and Strang and Nguyen [12], and the seminal work by Daubechies [3].
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(c) (d)

FIGURE 8.7: Direct volume rendering of an enstrophy field: original data (a),
and shown in (b)-(d), respectively, are results after reduction of the number
of expansion coefficients used in reconstruction by factors of 1

500 ,
1

100 , and
1
10 .
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