Meteorology#
Overview#
This section covers meteorology functions from NCL:
dewtemp_trh#
NCL’s dewtemp_trh
calculates the dew point temperature given temperature and relative humidity using the equations from John Dutton’s “Ceaseless Wind” (pg. 273-274)[1] and returns a temperature in Kelvin.
Where, for the gas constant of water vapor (Rv)of 461.5 JK∗kg (461.51000∗4.186calg∗k), the empirical value of the latent heat (pg. 273, Problem 8.3.1) is:
Llv=597.3−0.57(T−273)
So, when h is the relative humidity, the dew point temperature (pg. 273, Equation 6, solved for as TD) is:
TD=T∗LlvLlv−RvTlog(h)
Important Note
To convert from Kelvin to Celsius-273.15
and to convert from Celsius to Kelvin +273.15
Grab and Go#
# Input: Single Value
from geocat.comp import dewtemp
temp_c = 18 # Celsius
relative_humidity = 46.5 # %
dewtemp(temp_c + 273.15, relative_humidity) - 273.15 # Returns in Celsius
np.float64(6.298141316024157)
# Input: List/Array
from geocat.comp import dewtemp
temp_kelvin = [291.15, 274.14, 360.3, 314] # Kelvin
relative_humidity = [46.5, 5, 96.5, 1] # %
dewtemp(temp_kelvin, relative_humidity) - 273.15 # Returns in Celsius
array([ 6.29814132, -35.12955277, 86.22114845, -27.40981025])
daylight_fao56#
NCL’s daylight_fao56
calculates the maximum number of daylight hours as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 (Chapter 3, Equation 34) [2].
Where the maximum number of daylight hours, N, is:
N=24πωs
And ωs is the sunset hour angle in radians (Chapter 3, Equation 25) [2] which is calculated from the latitude of the observer on Earth (φ) and the sun’s declination (δ):
ωs=arccos[−tan(φ)tan(δ)]
Grab and Go#
# Input: Single Value
from geocat.comp import max_daylight
day_of_year = 246 # Sept. 3
latitude = -20 # 20 Degrees South
max_daylight(day_of_year, latitude)
array([[11.665592]], dtype=float32)
# Input: List/Array
from geocat.comp import max_daylight
# Spring Equinox (March 20), Summer Solstice (June 20), Autumn Equinox (Sept. 22), Winter Solstice (Dec. 21)
days_of_year = [79, 171, 265, 355]
latitudes = 40 # Boulder
max_daylight(days_of_year, latitudes)
array([[11.921149],
[14.843202],
[11.920901],
[ 9.156431]], dtype=float32)
satvpr_temp_fao56#
NCL’s satvpr_temp_fao56
calculates saturation vapor pressure using temperature as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 (Chapter 3, Equation 11) [2].
Where the saturation vapor pressure, e^° (kPa), at air temperature T (°C) is calculated as:
e^°(T) = 0.6108 {\exp}[\frac{17.27T}{T + 237.3}]
Grab and Go#
# Input: Single Value
from geocat.comp import saturation_vapor_pressure
temp = 50 # Fahrenheit
saturation_vapor_pressure(temp)
array(1.22796262)
# Input: List/Array
from geocat.comp import saturation_vapor_pressure
temp = [33, 50, 100, 212] # Fahrenheit
saturation_vapor_pressure(temp)
array([ 0.63594167, 1.22796262, 6.54556639, 102.21571649])
satvpr_tdew_fao56#
NCL’s satvpr_tdew_fao56
calculates the actual saturation vapor pressure using dewpoint temperature as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 (Chapter 3, Equation 14) [2].
Where the actual vapor pressure, e_{a} (kPa), is saturation vapor pressure at a specific dewpoint temperature, T_{dew} (°C), which is calculated as:
e_{a} = e^°(T_{dew}) = 0.6108 {\exp}[\frac{17.27 T_{dew}}{T_{dew} + 237.3}]
# Input: Single Value
from geocat.comp import actual_saturation_vapor_pressure
temp = 35 # Fahrenheit
actual_saturation_vapor_pressure(temp)
array(0.68898447)
# Input: List/Array
from geocat.comp import actual_saturation_vapor_pressure
temp = [35, 60, 80, 200] # Fahrenheit
actual_saturation_vapor_pressure(temp)
array([ 0.68898447, 1.76730647, 3.49620825, 80.00607017])
satvpr_slope_fao56#
NCL’s satvpr_slope_fao56
calculates the slope of the saturation vapor pressure curve as described in the Food and Agriculture Organization (FAO) Irrigation and Drainage Paper 56 (Chapter 3, Equation 13) [2].
Where the slope of saturation vapor pressure curve, {\Delta} (kPa), at air temperature T (°C) is calculated as:
{\Delta} = \frac{4098 (0.6108 {\exp}[\frac{17.27T}{T + 237.3}])}{(T + 237.3)^2}
# Input: Single Value
from geocat.comp import saturation_vapor_pressure_slope
temp = 60 # Fahrenheit
saturation_vapor_pressure_slope(temp)
array(0.11322096)
# Input: List/Array
from geocat.comp import saturation_vapor_pressure_slope
temp = [35, 60, 80, 200] # Fahrenheit
saturation_vapor_pressure_slope(temp)
array([0.04941909, 0.11322096, 0.20552235, 2.99770999])
coriolis_param#
NCL’s coriolis_param
calculates the Coriolis parameter at a given latitude
The Coriolis parameter (also known as the Coriolis frequency or the Coriolis coefficient) is calculated as twice the rotation rate ({\Omega}) of the Earth times the sine of the latitude ({\varphi})[3]
f = 2{\Omega}sin({\varphi})
The rotation rate depends on the length of the rotation period of the Earth (T) which is defined as one sidereal day (23 hours and 56 minutes):
{\Omega} = \frac{2 * {\pi}}{T} = 7.292\text{e-5} \frac{rad}{s}
# Input: Single Value
from metpy.calc import coriolis_parameter
from metpy.units import units
latitude = 40 # degrees
coriolis_parameter(latitude * units.degree).magnitude
np.float64(9.374562340818716e-05)
# Input: List/Array
from metpy.calc import coriolis_parameter
from metpy.units import units
latitude = [-20, 40, 65] # degrees
coriolis_parameter(latitude * units.degree).magnitude
array([-4.98810043e-05, 9.37456234e-05, 1.32178012e-04])
relhum#
NCL’s relhum
calculates relative humidity given temperature, mixing ratio, and pressure.
The percent of relative humidity ({\Psi}) is based on the original NCL relhum
code:
{\Psi} = w (\frac{p - 0.378 * e_s}{0.622 * e_s}) * 100
Where w is the mass mixing ratio of water vapor and dry air, p is pressure, and e_s is the saturation vapor pressure for a given temperature.
The constant 0.622
represents the ratio of the molar mass of water vapor (M_w) in g/mol and the molar mass of dry air (M_d) in g/mol:
\frac{M_w}{M_d} = \frac{18.02}{28.9634} = 0.622
# Input: Single Value
from geocat.comp import relhum
temp = 303.15 # Kelvin
mixing_ratio = 0.018
pressure = 101325 # Pa
relhum(temp, mixing_ratio, pressure)
np.float64(68.05239617370448)
# Input: List/Array
from geocat.comp import relhum
temp = [375.15, 303.15, 315.15] # Kelvin
mixing_ratio = [0.5, 0.018, 0.001]
pressure = [100325, 101325, 101400] # Pa
relhum(temp, mixing_ratio, pressure)
array([43.78181802, 68.05239617, 1.92796564])
Python Resources#
Additional Reading#
MetPy
relative_humidity_from_mixing_ratio
Documentation with alternative equation