Gradient metrics
Contents
Gradient metrics¶
To isolate CO2 gradients driven by Southern Ocean fluxes, we examine CO2 anomalies relative to a local reference, using potential temperature (\(\theta\)) to delineate boundaries in the vertical. We define metrics quantifying the vertical and horizontal CO2 gradients
\(\Delta_{\theta}\ce{CO}_2\) is the difference between the median value of CO2 observed south of 45°S where \(\theta\) < 280 K and that in the mid- to upper-troposphere, \(\pu{295 K} < \theta < \pu{305 K}\).
\(\Delta_{y}\ce{CO}_2\) is the difference between CO2 averaged across stations in the core latitudes of summertime CO2-drawdown and that at the South Pole Observatory (SPO).
The atmospheric inversion models explicitly simulate CO2 tracers responsive only to ocean \((\ce{CO}_2^{ocn})\), land \((\ce{CO}_2^{lnd})\) and fossil fuel \((\ce{CO}_2^{ff})\) fluxes and subject to identical transport fields. We take advantage of these tracers to demonstrate that the gradient metrics (\(\Delta_{\theta}\ce{CO}_2\), \(\Delta_{y}\ce{CO}_2\)) are primarily responsive to local ocean influence.
Related analysis:
%load_ext autoreload
%autoreload 2
from itertools import product
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import obs_aircraft
import emergent_constraint as ec
import datasets
import figure_panels
import util
clobber = False
clobber_deep = False
constraint_type = 'ocean_constraint'
campaign_info = obs_aircraft.get_campaign_info(verbose=False)
model_input_lists = ec.get_model_tracer_lists(constraint_type)
model_input_lists
{'model_tracer_list': [('CT2017', 'CO2_OCN'),
('CT2019B', 'CO2_OCN'),
('CTE2018', 'CO2_OCN'),
('CTE2020', 'CO2_OCN'),
('MIROC', 'CO2_OCN'),
('CAMSv20r1', 'CO2_OCN'),
('s99oc_v2020', 'CO2_OCN'),
('s99oc_ADJocI40S_v2020', 'CO2_OCN'),
('s99oc_SOCCOM_v2020', 'CO2_OCN'),
('TM5-Flux-m0f', 'CO2_OCN'),
('TM5-Flux-mmf', 'CO2_OCN'),
('TM5-Flux-mrf', 'CO2_OCN'),
('TM5-Flux-mwf', 'CO2_OCN')],
'model_tracer_ext_list': [('CT2017', 'CO2_LND+CO2_FFF'),
('CT2019B', 'CO2_LND+CO2_FFF'),
('CTE2018', 'CO2_LND+CO2_FFF'),
('CTE2020', 'CO2_LND+CO2_FFF'),
('CAMSv20r1', 'CO2_LND+CO2_FFF'),
('s99oc_v2020', 'CO2_LND+CO2_FFF'),
('s99oc_ADJocI40S_v2020', 'CO2_LND+CO2_FFF'),
('s99oc_SOCCOM_v2020', 'CO2_LND+CO2_FFF')],
'model_list_sfco2_lnd': []}
air_parms = ec.get_parameters('default')
obj_srf = ec.whole_enchilada_srf(**model_input_lists)
obj_air = ec.whole_enchilada(clobber=clobber_deep, **model_input_lists)
ds_obs = datasets.aircraft_profiles_seasonal()
ds_obs
<xarray.Dataset> Dimensions: (season: 4, theta: 11) Coordinates: * season (season) <U3 'DJF' 'MAM' 'JJA' 'SON' * theta (theta) float64 270.0 275.0 280.0 ... 310.0 315.0 320.0 Data variables: (12/135) ch4 (season, theta) float64 -1.691 -1.112 ... -1.277 -8.285 ch4_med (season, theta) float64 -1.625 -0.805 ... 0.9865 -13.22 ch4_med_std (season, theta) float64 0.557 1.139 ... 11.36 19.76 ch4_std (season, theta) float64 -0.5766 -0.5704 ... 2.321 5.563 ch4_std_std (season, theta) float64 0.09758 0.2406 ... 2.37 4.173 ch4mpanther (season, theta) float64 nan 3.895 ... -1.017 -3.213 ... ... sf6ucats_std_std (season, theta) float64 nan 0.02498 ... 0.009239 strat (season, theta) float64 0.0 0.0 0.0 ... 0.2142 0.5099 strat_med (season, theta) float64 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.5 strat_med_std (season, theta) float64 0.0 0.0 0.0 ... 0.3796 0.4841 strat_std (season, theta) float64 0.0 0.0 0.0 ... 0.1769 0.1614 strat_std_std (season, theta) float64 0.0 0.0 0.0 ... 0.2364 0.2356
- season: 4
- theta: 11
- season(season)<U3'DJF' 'MAM' 'JJA' 'SON'
array(['DJF', 'MAM', 'JJA', 'SON'], dtype='<U3')
- theta(theta)float64270.0 275.0 280.0 ... 315.0 320.0
array([270., 275., 280., 285., 290., 295., 300., 305., 310., 315., 320.])
- ch4(season, theta)float64-1.691 -1.112 ... -1.277 -8.285
array([[ -1.69142025, -1.11169626, -1.41119922, -1.47144139, -1.25550859, -0.71904781, 0.26277745, 1.43149875, 2.19633829, 1.35294594, 0.94747435], [-10.74661427, -8.62435173, -6.86129368, -4.19534455, -3.09516943, -1.28771406, -0.29010397, 0.36310951, -2.53672165, -2.38071571, -5.60541478], [ -6.40628221, -5.24724535, -4.76634536, -3.45343837, -1.76892755, -1.46986169, -0.83697128, -0.08726896, -3.33961392, -3.57319798, -10.58875574], [ -3.6836404 , -2.63383912, -2.41648358, -2.14479146, -1.47800081, -0.99194366, -0.19331799, 0.65935059, -0.14606007, -1.27724269, -8.28470699]])
- ch4_med(season, theta)float64-1.625 -0.805 ... 0.9865 -13.22
array([[ -1.625 , -0.805 , -1.3625 , -1.4925 , -1.43975 , -0.94375 , 0.117625, 1.763875, 3.515 , 4.7125 , 6.2925 ], [-11.1315 , -9.24375 , -7.7135 , -5.057 , -3.551 , -1.5055 , 0.45 , 1.5425 , 0.0425 , 2.7965 , -1.7225 ], [ -4.585 , -3.401 , -3.1885 , -2.003 , -1.47725 , -1.332 , 0.10375 , 0.731 , 0.818 , -0.995 , -10.0345 ], [ -3.941 , -3.2705 , -2.9235 , -2.48575 , -1.79375 , -0.9595 , -0.05 , 1.075 , 0.8065 , 0.9865 , -13.2215 ]])
- ch4_med_std(season, theta)float640.557 1.139 1.077 ... 11.36 19.76
array([[ 0.55697156, 1.13893233, 1.07711643, 1.20977618, 2.01149055, 2.58110624, 2.2938259 , 3.97883387, 7.45136474, 12.14043024, 17.04264795], [ 1.47930218, 3.16653644, 3.10084049, 3.71440644, 3.45564158, 3.68492487, 5.77793664, 9.29690559, 12.30724011, 14.59744309, 17.04936661], [ 4.21503617, 4.1562741 , 4.1253878 , 4.90132392, 6.38559781, 4.19601157, 4.99723899, 5.59593596, 11.02996915, 14.59399754, 8.26372657], [ 0.91848791, 1.59615026, 1.50042492, 1.53112898, 1.53476138, 1.8447354 , 2.37807233, 2.8384319 , 6.93755857, 11.3617114 , 19.76092934]])
- ch4_std(season, theta)float64-0.5766 -0.5704 ... 2.321 5.563
array([[-0.57657988, -0.57039662, -0.560658 , -0.43394832, -0.20222179, -0.13322378, 0.2015619 , 0.67363486, 1.8805419 , 2.57319873, 2.75465552], [-0.78581547, -1.04684968, -0.78016355, -0.69081614, -0.40516658, -0.31642107, 0.52554852, 0.58197693, 0.50635699, 0.59411937, 0.95468445], [-0.20587731, -0.55658135, -0.37219918, -0.45944514, -0.28922282, 0.17539863, 0.29184296, 0.49749358, 0.89325378, 2.28952025, 1.62329406], [-0.49194384, -0.40644828, -0.51312097, -0.39459632, -0.20604594, 0.08764645, 0.12619303, 0.58317674, 1.42387146, 2.32081649, 5.56316726]])
- ch4_std_std(season, theta)float640.09758 0.2406 ... 2.37 4.173
array([[0.09757561, 0.24055569, 0.21462884, 0.48947931, 0.80301913, 0.56702942, 0.72191719, 1.027937 , 2.22966193, 2.53358042, 3.18274047], [0.49136188, 0.75607481, 0.59858489, 0.73066873, 1.04808707, 0.98434335, 1.28081084, 1.56532615, 1.44232885, 1.44732018, 1.91488473], [0.83519773, 0.35614402, 0.53059478, 0.4382929 , 0.71611833, 0.70325791, 0.84140923, 1.35122279, 1.69050246, 2.73521788, 1.16423442], [0.30106553, 0.42497669, 0.251607 , 0.39326836, 0.34321486, 0.62004673, 0.58504659, 1.11646471, 1.81659895, 2.36957329, 4.17275412]])
- ch4mpanther(season, theta)float64nan 3.895 1.785 ... -1.017 -3.213
array([[ nan, 3.8955 , 1.78465 , 5.95346875, 3.50910714, 1.90322917, -0.07636364, -0.77244048, 5.6625 , -1.41360714, -1.77895238], [-3.265125 , -2.86385714, 0.58363768, 3.06381746, 0.66991667, 2.6287381 , 0.35491975, -0.81096429, 2.24522549, -1.06760833, 2.14502381], [-0.90951852, -5.78663889, -4.31861806, -0.9175625 , 2.12773148, -0.3116129 , -0.86975538, 0.91043667, -3.26564103, 5.98811111, -1.059 ], [-5.01185714, -1.91405556, -4.96930952, -6.56277083, -3.33144444, 0.56954321, -1.0907037 , -1.21516932, -2.85591528, -1.0172549 , -3.21280208]])
- ch4mpanther_med(season, theta)float64nan 7.524 2.266 ... -0.959 -1.414
array([[ nan, 7.52450000e+00, 2.26600000e+00, 5.67450000e+00, 2.50500000e-01, 2.22800000e+00, 1.77635684e-15, -1.08000000e+00, 5.92450000e+00, -5.80000000e-02, 3.58000000e-01], [-2.68950000e+00, -6.28500000e-01, 6.84500000e-01, 4.81350000e+00, -1.10250000e+00, 1.27500000e-01, 1.52950000e+00, -2.09850000e+00, 2.75150000e+00, -8.92500000e-01, 2.20550000e+00], [ 4.72850000e+00, -4.43875000e+00, -6.01375000e+00, 2.41350000e+00, 1.37000000e+00, -7.30000000e-02, -1.15550000e+00, 1.64500000e-01, -2.82250000e+00, 5.41250000e+00, 1.26675000e+00], [-6.54700000e+00, -3.27300000e+00, -6.08100000e+00, -6.02650000e+00, -4.49900000e+00, 9.35000000e-01, 7.08000000e-01, -2.51600000e+00, -2.85450000e+00, -9.59000000e-01, -1.41400000e+00]])
- ch4mpanther_med_std(season, theta)float64nan 21.09 23.61 ... 8.139 6.573
array([[ nan, 21.0867592 , 23.60533571, 4.64293896, 18.98526705, 12.02086324, 11.24851152, 17.04761106, 16.96852512, 17.03280675, 17.8247956 ], [ 2.41434996, 8.56833619, 10.41650216, 7.59244474, 7.65252889, 8.8619646 , 5.67421813, 6.90130901, 8.92410031, 7.17128318, 5.46124809], [ 8.71995083, 8.65239486, 10.35299657, 11.69473536, 10.56869185, 8.4608635 , 7.45521774, 10.0432289 , 8.70762439, 8.80206036, 7.41691301], [ 7.2230055 , 9.5547756 , 10.16145229, 8.50012013, 9.20331793, 7.64239898, 10.8969826 , 12.67973824, 8.25018167, 8.13880525, 6.57329995]])
- ch4mpanther_std(season, theta)float64nan nan 3.728 ... -0.2436 0.7386
array([[ nan, nan, 3.7282205 , -0.93691649, 0.10818734, -5.66522168, 7.27524489, 8.34074994, nan, 0.42497118, 1.26992804], [-0.73860909, -1.83282078, 2.99394839, -0.08350085, 2.78755635, 1.37768362, 3.8030295 , 1.03728361, 0.97157243, 3.99195786, 1.74556231], [ 1.30932606, -1.7727167 , -2.1306289 , -2.88146013, 3.07402888, -0.20299151, 2.13127504, 0.32680008, -3.99727463, nan, nan], [ 0.23371294, 2.34723712, -7.2251335 , 4.33208969, -0.87728504, 2.57514791, -1.96252758, 1.11215188, -1.22852698, -0.24357771, 0.73857709]])
- ch4mpanther_std_std(season, theta)float64nan nan 1.501 ... 3.522 2.075 5.103
array([[ nan, nan, 1.50083414, 0. , 0. , 7.11742252, 8.42782895, 2.31407885, nan, 0. , 11.510602 ], [ 0.03920837, 0. , 1.18831037, 1.77383383, 5.70970266, 4.71412058, 2.98102195, 4.71844521, 2.84169123, 4.09797439, 3.17737173], [ 1.69775914, 2.86799468, 1.006956 , 0.18031223, 1.36480357, 4.42020118, 4.67051065, 3.12296223, 0. , nan, nan], [ 4.11080283, 4.24213558, 3.69949909, 1.43153768, 4.7859264 , 6.85814073, 3.73986929, 4.0407676 , 3.52217674, 2.07514172, 5.10334038]])
- ch4mqcls(season, theta)float64-1.857 -1.393 ... 1.241 -0.7424
array([[-1.85681616, -1.39303742, -1.13383611, -1.00389672, -0.60672303, 0.02287656, 0.52867971, 0.52710585, 0.43433667, -0.32757717, -0.55963697], [-3.29190043, -2.0710038 , -4.16017842, -3.49495703, -0.78625636, -0.30088066, 0.16545764, 0.1882268 , 0.4216262 , 1.19692393, 1.98282361], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ 1.19902791, -1.62458487, -1.88271882, -0.75497902, -0.21769739, 1.03168179, 0.85448971, 0.82372871, 1.5678792 , 1.24125544, -0.74243651]])
- ch4mqcls_med(season, theta)float64-2.837 -2.133 ... 0.7718 -2.222
array([[-2.8375 , -2.1325 , -1.43 , -0.94375, -0.975 , -0.34575, -0.0625 , 0.165 , 0.53 , -0.0675 , -0.21 ], [-4.91125, -1.892 , -5.28325, -3.71175, 1.244 , 0.133 , -0.057 , 0.006 , 0.622 , 1.12 , 2.063 ], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [-1.95225, -5.20175, -3.14825, -2.07425, -0.19475, 0.60975, -0.52975, 0.70875, -0.01875, 0.77175, -2.22175]])
- ch4mqcls_med_std(season, theta)float642.603 2.405 2.637 ... 5.541 4.936
array([[ 2.60324436, 2.40524002, 2.63711087, 2.97488332, 3.31979664, 3.47805023, 3.44889587, 3.39889142, 4.7100513 , 6.39434789, 7.15406509], [ 5.37740892, 5.76810437, 6.68054328, 6.91334252, 7.01618127, 7.00257221, 6.1241099 , 4.61616617, 4.35132195, 4.1018526 , 3.44171198], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ 8.5381189 , 10.51931966, 9.05518785, 7.35968128, 5.46037478, 7.03003855, 6.10102163, 6.12371104, 6.34583017, 5.54137267, 4.93608164]])
- ch4mqcls_std(season, theta)float640.1548 0.1686 ... 0.5454 0.9308
array([[ 0.15478278, 0.16857468, 0.04286454, 0.11286148, 0.1093275 , 0.19548337, 0.10487615, 0.37884106, 0.68546679, 0.77502371, 0.92241501], [ 0.43826488, -0.16584784, 0.10366134, 0.22120929, 0.24000618, 0.09441096, 0.19173636, 0.46303849, -0.11953788, -0.02804116, -0.21451026], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ 2.52735814, 0.57949416, 0.48232084, 0.91376754, 0.58675957, 0.09270043, 0.30461373, 0.19598334, 0.66139328, 0.54544568, 0.93079268]])
- ch4mqcls_std_std(season, theta)float640.379 0.3551 0.4623 ... 1.454 1.431
array([[0.37903785, 0.35505334, 0.46233959, 0.51290591, 0.56966731, 0.84073201, 0.49048967, 0.90101645, 1.5949327 , 2.16457571, 3.26823727], [0.76284732, 0.45478469, 0.50192578, 0.91182617, 0.9039362 , 0.43873777, 0.70200113, 0.99509003, 0.47463389, 0.55150558, 0.4390856 ], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [3.08769062, 1.19630922, 1.03961732, 1.61856851, 1.11440019, 0.64977019, 0.91099147, 1.01347226, 1.05546776, 1.45374585, 1.43093444]])
- ch4mucats(season, theta)float64nan -23.09 2.386 ... 9.89 3.902
array([[ nan, -23.091875 , 2.38640909, 8.45108333, -3.416 , -1.0430875 , -0.13854386, -5.91975 , -2.53425 , -1.45621154, 3.36225 ], [ 1.44422222, 3.37169231, 1.31091667, 3.04755882, 3.0725625 , -0.34016667, -0.56939103, 1.86337931, 2.76425 , 3.20690909, -0.143625 ], [ 12.70244444, -3.33766667, 3.35845238, 6.195 , -0.78689474, 1.66307051, -0.82636508, 2.51650347, 3.16007778, -2.36988889, -4.38616667], [ -3.03753846, -3.85881818, 1.8155625 , -4.75175 , 0.82619444, -1.91519048, -0.33800877, -0.78377083, 3.44695513, 9.89001333, 3.9015303 ]])
- ch4mucats_med(season, theta)float64nan -23.61 -1.408 ... 2.442 4.567
array([[ nan, -23.6065, -1.408 , 13.8205, -3.1435, -0.8315, 2.258 , -3.746 , 0.14 , -4.4975, 6.6515], [ 1.717 , 2.855 , 0.2585, -2.016 , 2.535 , -1.332 , -0.123 , 0.568 , 3.5555, 3.477 , -0.103 ], [ 15.16 , -3.4025, 5.2845, 1.3305, 1.075 , 2.1215, -3.215 , 0.454 , 2.769 , -1.333 , -4.2485], [ 4.452 , 0.147 , 4.941 , -0.1945, 4.9145, 3.146 , -1.23 , 3.058 , 1.275 , 2.442 , 4.567 ]])
- ch4mucats_med_std(season, theta)float64nan 12.38 12.05 ... 15.96 16.51
array([[ nan, 12.37514619, 12.04912088, 19.49679561, 16.19092082, 11.02631991, 22.39050929, 19.24266423, 15.66877995, 17.98354702, 14.12076047], [ 4.81594319, 9.22748345, 9.64068225, 10.18445056, 7.80398607, 7.9024048 , 7.55455369, 5.62641068, 6.50823998, 5.35955059, 4.13693581], [12.66446927, 8.92579415, 12.61888135, 13.76264961, 12.00346366, 11.67131721, 15.7684374 , 9.76402227, 12.55546331, 8.99754356, 1.4485 ], [20.53362695, 19.43232132, 29.95822022, 23.57673615, 17.43530429, 28.83144455, 17.02953185, 21.74684738, 16.61981227, 15.9599371 , 16.50901207]])
- ch4mucats_std(season, theta)float64nan 3.818 1.669 ... -4.175 -6.408
array([[ nan, 3.81807044, 1.6685363 , 11.67185808, 8.17274018, 0.60916259, 0.61432569, 4.70348668, nan, 5.52356462, -3.98829368], [ 2.11566349, nan, 1.51061579, 1.12889598, 0.9074537 , 1.57649457, 0.23752456, -0.5218448 , 0.64185245, 1.29263305, 1.20026325], [ 4.90378553, 0.97121116, -3.27567216, -4.29249172, 1.78473752, -1.40480217, 0.65842398, -1.03022769, -3.54437274, nan, nan], [-0.18290495, 2.79194041, nan, -9.52189992, 1.12833594, 0.21566757, 3.84070046, 3.20518959, -1.37064311, -4.17468494, -6.40812626]])
- ch4mucats_std_std(season, theta)float64nan 7.712 3.698 ... 3.155 2.551
array([[ nan, 7.71150531, 3.69838962, 5.6359946 , 6.52518138, 5.09950663, 3.05631516, 8.59328109, nan, 3.31173461, 0.74599765], [ 2.33317295, nan, 3.48787769, 4.5095735 , 2.44383096, 3.25073936, 1.73898239, 3.15128455, 2.24182734, 2.93155865, 3.18975894], [ 7.54129382, 3.98560737, 0.17854446, 2.71564359, 2.57952554, 3.57477905, 6.21030298, 3.41009787, 3.02182083, nan, nan], [ 5.05105036, 12.99522255, nan, 0. , 13.1110971 , 13.27007379, 13.44341749, 11.74683579, 4.34285053, 3.15488254, 2.55072716]])
- ch4noaa(season, theta)float64-1.691 -1.069 ... -1.32 -8.285
array([[ -1.69142025, -1.06878179, -1.41029353, -1.48909517, -1.23814449, -0.73854169, 0.26889513, 1.56877959, 2.32687371, 1.47722601, 0.803706 ], [-11.14932116, -8.50080053, -7.16455322, -4.65886093, -3.58645888, -1.24598734, 0.28651322, 1.30195391, -1.28057882, -2.76378719, -5.21040569], [ -2.9946454 , -2.5938781 , -2.4888579 , -1.649521 , -0.94568754, -0.04077042, 0.62839273, -0.55808071, -5.17421063, -5.16144029, -6.65777841], [ -4.07154994, -3.44572981, -3.08072415, -2.59712124, -1.86965478, -1.03271632, -0.43907984, 0.6099027 , -0.12151518, -1.31990248, -8.28470699]])
- ch4noaa_med(season, theta)float64-1.625 -0.745 ... 0.9865 -13.22
array([[ -1.625 , -0.745 , -1.365 , -1.48 , -1.467375, -1.035 , 0.12775 , 1.865 , 3.745 , 4.695 , 6.6375 ], [-11.1705 , -9.2365 , -7.8035 , -5.0575 , -3.551 , -1.4205 , 0.7045 , 1.5425 , 1.2525 , 1.92125 , 1.219 ], [ -2.8525 , -2.611 , -2.512 , -1.681 , -1.158 , -1.002 , 0.206 , 0.602 , -1.2715 , -4.96 , -6.239 ], [ -4.0055 , -3.453 , -3.179 , -2.80975 , -2.1735 , -0.9595 , -0.147 , 1.0375 , 0.8065 , 0.9865 , -13.2215 ]])
- ch4noaa_med_std(season, theta)float640.557 1.128 1.088 ... 11.63 19.76
array([[ 0.55697156, 1.12802461, 1.08846343, 1.11006315, 2.07542824, 2.66731798, 2.25475278, 4.06127014, 7.71675418, 12.48533503, 17.38663822], [ 0.75331693, 3.34196662, 2.87383247, 3.23116996, 2.98756101, 3.2985126 , 4.8264421 , 8.07858286, 11.78238599, 13.9365477 , 17.54793497], [ 0.31242353, 0.82153631, 0.75334952, 1.0056646 , 1.70264471, 2.25261103, 3.28325368, 4.92725308, 9.48545484, 9.35320764, 4.23011459], [ 0.40858586, 0.56102017, 0.96370775, 1.33222534, 1.26040582, 1.86746421, 2.26379863, 2.92460321, 7.1264774 , 11.62541849, 19.76092934]])
- ch4noaa_std(season, theta)float64-0.5766 -0.6052 ... 2.462 5.563
array([[-0.57657988, -0.60516305, -0.58861558, -0.45738751, -0.2224452 , -0.14589513, 0.21421027, 0.74326084, 1.9938347 , 2.77840301, 2.84800165], [-0.90803497, -1.02953487, -0.80163699, -0.55300905, -0.3234609 , -0.25900861, 0.67267342, 0.63904052, 0.57127814, 0.70456568, 0.66129092], [-0.68895711, -0.66948373, -0.58760456, -0.49104932, -0.39619206, 0.22108671, 0.38106201, 0.50554122, 0.65664046, 1.95064916, 1.99132176], [-0.61447418, -0.6243006 , -0.58946902, -0.43138323, -0.18926275, 0.10900741, 0.12555497, 0.69993679, 1.52316884, 2.46217387, 5.56316726]])
- ch4noaa_std_std(season, theta)float640.09758 0.1739 ... 2.366 4.173
array([[0.09757561, 0.17386868, 0.18583682, 0.49171504, 0.81952409, 0.58276066, 0.74696905, 1.05874931, 2.30283271, 2.58492056, 3.27119196], [0.31822394, 0.28860473, 0.52020584, 0.69948511, 0.95918583, 0.93826562, 1.35187219, 1.62725391, 1.381913 , 1.45566118, 1.61698508], [0.09945028, 0.1249326 , 0.17929313, 0.19156054, 0.25981664, 0.71878354, 0.86237468, 1.20810538, 1.25605611, 2.02509396, 1.23154952], [0.12326637, 0.13613172, 0.14138777, 0.39046269, 0.37518629, 0.65609975, 0.6237292 , 1.20706952, 1.84776948, 2.36587555, 4.17275412]])
- ch4panther(season, theta)float64nan -5.64 -1.641 ... 2.563 -2.861
array([[ nan, -5.64 , -1.64090909, -4.01111111, -0.34722222, -3.3 , 1.14772727, -1.66666667, -6.11666667, 0.725 , 7.00238095], [-8.2962963 , -5.25 , -8.49861111, -7.45952381, -4.40263158, -3.96212121, -0.52530864, 0.76666667, 4.48235294, -0.06825397, -4.91984127], [-4.55833333, -0.85 , -1.12222222, -4.05882353, -4.74047619, -0.853125 , -0.14010417, -0.49910256, 0.9 , -5.95833333, -0.71428571], [-0.38035714, -2.46315789, 1.37954545, 2.14464286, 0.16766667, -0.80176768, -1.1872807 , -0.1445122 , 1.59658333, 2.56291667, -2.86117647]])
- ch4panther_med(season, theta)float64nan -9.0 -1.9 ... 4.25 4.1 -2.9
array([[ nan, -9. , -1.9 , -6.15 , -0.25 , -3.7 , 3.05 , 2.45 , -0.2 , 1.25 , 9.75 ], [ -7.75 , -2.2 , -7.35 , -9.2 , -3.55 , -2.7 , 1.6 , 1.3 , 4.5 , 7.5 , 0.1 ], [ -7.75 , -0.2 , -2.35 , -3.15 , -4.85 , -0.45 , 0.55 , 0.175 , -1.05 , -11.3 , -7.9 ], [ 0.8875, -2.1 , 1. , 1.45 , 1.5 , -2.175 , -3.8375, 2.3 , 4.25 , 4.1 , -2.9 ]])
- ch4panther_med_std(season, theta)float64nan 20.08 22.89 ... 9.973 22.31
array([[ nan, 20.08229071, 22.88835371, 9.36059346, 24.71432599, 12.32589519, 11.43052609, 21.40609922, 19.81652649, 20.62145424, 21.07177239], [ 2.2977579 , 8.79218403, 11.1579498 , 8.79058324, 8.5796803 , 9.97556001, 7.66717971, 12.33346514, 11.58473596, 19.05784368, 17.89093026], [ 7.79944601, 7.36066573, 7.78073004, 7.26210837, 7.22643798, 7.49845817, 6.92637181, 10.55094081, 13.80297327, 18.78062869, 14.08559113], [ 7.95545976, 9.0073704 , 9.68790435, 8.98612362, 9.66605587, 9.73779138, 10.74099088, 13.80629674, 12.78025319, 9.97301445, 22.31006608]])
- ch4panther_std(season, theta)float64nan nan 4.632 ... -0.9279 5.076
array([[ nan, nan, 4.63154942, 2.33345238, 1.06066017, -5.02045815, 4.63154942, 4.24011873, -0.70710678, 2.02703944, 2.22030055], [-2.73762626, -3.11126984, 0.35533814, -1.01580831, 1.51320851, -0.02867112, 2.7258489 , 0.66801059, -1.06039029, 3.56325374, 2.65098668], [-0.1453256 , -2.6627042 , -1.52616385, -5.10959177, 4.26621091, 0.78086114, 1.32527644, 0.72286848, -3.18198052, nan, 4.1888624 ], [-1.13668144, 2.52600822, -4.8409531 , 3.60624458, -0.02255026, 1.1895764 , -1.31532181, -0.09050589, -1.17836849, -0.92785733, 5.07569836]])
- ch4panther_std_std(season, theta)float64nan nan 1.45 ... 5.156 3.237 8.875
array([[ nan, nan, 1.4495689 , 2.12132034, 0. , 6.60631011, 13.19966856, 4.27401368, 0. , 9.89854086, 11.05913531], [ 0.97225605, 0. , 1.55884777, 3.18515096, 5.67425766, 3.34315308, 3.66308508, 4.71516294, 2.58221309, 3.88556775, 5.78151649], [ 2.54384598, 1.27046273, 2.7465874 , 0.24748737, 1.29142471, 4.8012942 , 3.90353379, 3.2466187 , 0. , nan, 0. ], [ 4.63310046, 4.43887445, 3.81304152, 1.23743687, 5.35282201, 7.46400951, 5.01566636, 3.83811501, 5.1564164 , 3.23673902, 8.87514795]])
- ch4qcls(season, theta)float640.4111 0.3095 ... 0.05946 -5.614
array([[ 4.11088792e-01, 3.09481099e-01, -2.01535956e-01, -4.29956908e-01, -4.77092345e-01, -6.35120984e-01, 1.68028714e-01, 1.44591138e+00, 2.73649723e+00, 3.44646308e+00, 2.35306555e+00], [-8.58911936e+00, -7.91374603e+00, -4.43513223e+00, -1.86242225e+00, -2.15491840e+00, -1.14066390e+00, -1.17071573e+00, -1.02604324e+00, -3.88866294e+00, -4.06910648e+00, -6.89930828e+00], [-9.24931288e+00, -1.02223090e+01, -8.56215778e+00, -6.61029376e+00, -3.27820090e+00, -3.81765448e+00, -3.08386276e+00, 8.54354555e-01, 8.53750000e-01, 3.47222222e-04, -1.71403846e+01], [-4.67512733e+00, -1.49868032e+00, -8.90353953e-01, -1.64158650e+00, -1.25621962e+00, -1.59838506e+00, -7.07799333e-01, 2.06529890e-01, -1.54309121e+00, 5.94585338e-02, -5.61414318e+00]])
- ch4qcls_med(season, theta)float640.975 0.64 -0.16 ... 4.417 -6.805
array([[ 0.975 , 0.64 , -0.16 , -0.5675 , -0.735 , -0.825 , -0.03 , 1.0575 , 2.675 , 4.84 , 6.58 ], [ -7.381 , -9.35 , -6.53875 , -2.903 , -3.554 , -1.026 , -0.0755 , 0.724 , -1.733 , 2.359 , -0.79525 ], [ -8.7225 , -10.85125 , -8.2975 , -7.0125 , -4.9225 , -2.555 , -1.195 , 2.075 , 4.325 , 6.3225 , -11.93 ], [ -1.819125, 0.08475 , -0.04525 , -0.0975 , 0.18 , -1.285 , 0.70125 , 0.73 , 0.34175 , 4.41675 , -6.805 ]])
- ch4qcls_med_std(season, theta)float642.923 2.697 2.589 ... 11.02 19.01
array([[ 2.92259205, 2.69668538, 2.58871708, 2.79874677, 3.42277772, 3.99683893, 3.94000124, 4.8672518 , 8.39145725, 13.30007333, 17.81130445], [ 4.57634299, 6.12631838, 7.21007459, 7.45495708, 7.0517453 , 6.81588476, 7.93635537, 10.73234445, 13.42598501, 16.29735579, 18.254282 ], [ 3.90020904, 3.54723031, 4.92481012, 7.03187548, 10.36414193, 5.48400885, 6.30861902, 6.652911 , 12.83335716, 21.80657369, 8.30025334], [ 7.84960543, 8.62373121, 7.6721885 , 6.33152425, 4.87606002, 6.09372398, 5.62250083, 6.75158032, 10.19434329, 11.01651424, 19.00682103]])
- ch4qcls_std(season, theta)float64-0.198 -0.1754 ... 0.8791 2.96
array([[-0.19796748, -0.17539438, -0.2532183 , -0.18487494, 0.01267303, -0.01547884, 0.11956955, 0.52098004, 1.61746959, 2.25243022, 2.74971265], [-0.37709471, -1.15079793, -0.70767751, -0.73266526, -0.70235401, -0.45430943, 0.21496524, 0.5368662 , -0.05915895, 0.15977608, 0.75541701], [ 0.19668918, -0.3469055 , -0.01319022, -0.40413782, -0.10202665, 0.10033963, 0.14526879, 0.48139828, 1.52422263, 3.05198021, 1.00991456], [ 1.80612847, 0.11310571, -0.00337883, 0.38124848, 0.13329439, 0.12011549, 0.14855019, 0.27353779, 1.03141522, 0.87906259, 2.9602934 ]])
- ch4qcls_std_std(season, theta)float640.3859 0.3961 0.493 ... 1.665 2.978
array([[0.38587424, 0.3961185 , 0.49297261, 0.55438113, 0.84172242, 0.67239322, 0.57941944, 1.07425243, 1.99936609, 2.35839269, 3.56346726], [1.03467404, 0.79890867, 0.71308582, 0.94232678, 0.94638703, 1.02768392, 1.19696043, 1.27619293, 1.31218769, 1.258871 , 2.08933594], [0.95607416, 0.51553124, 0.70067985, 0.67768205, 1.11223657, 0.67025174, 0.78404367, 1.59936966, 2.39249638, 3.77460217, 0.69618917], [3.00616468, 1.03941467, 0.88842932, 1.40784505, 1.00290624, 0.6553151 , 0.96173239, 1.25189787, 1.40651747, 1.66501324, 2.97810809]])
- ch4ucats(season, theta)float64nan 14.01 -4.95 ... -10.17 1.638
array([[ nan, 1.40100000e+01, -4.95000000e+00, -4.35000000e+00, 1.49761905e+00, 8.33333333e-03, 8.29523810e-01, 5.11842105e+00, 3.31818182e+00, 8.68750000e+00, 7.83333333e-01], [-1.33300000e+01, -1.19769231e+01, -8.25277778e+00, -7.99705882e+00, -7.49411765e+00, 1.32500000e-01, 1.80000000e+00, -2.28333333e-01, -1.52045455e+00, -8.74242424e-01, 2.51470588e+00], [-1.71726190e+01, 1.75601852e+00, -6.34240196e+00, -7.52788462e+00, -4.86507937e-01, -1.59255952e+00, 2.64039855e+00, -8.03645833e-01, -4.09505208e+00, 1.03928571e+00, -1.21416667e+01], [ 3.17500000e+00, -1.65454545e+00, -7.53235294e+00, -4.92058824e+00, -2.58809524e+00, -1.52608696e+00, 2.06587302e+00, -1.25512821e+00, -4.94196429e+00, -1.01743750e+01, 1.63750000e+00]])
- ch4ucats_med(season, theta)float64nan 18.0 -2.0 ... 0.15 -3.6 5.1
array([[ nan, 18. , -2. , -2. , -0.5 , -1. , -0.8 , 4.8 , 5. , 8.65 , 6.55 ], [-13.625, -8.3 , -7.025, -4. , -6.5 , -1.1 , 0. , 0.8 , 1.325, -0.05 , 7.45 ], [-21.25 , 2.25 , -9.75 , -5.45 , -3.75 , -0.95 , 4.05 , -0.6 , -3.35 , -4.25 , -11.45 ], [ -7.45 , -4.35 , -6.8 , -9. , -6.05 , -2.6 , 4.9 , -6.05 , 0.15 , -3.6 , 5.1 ]])
- ch4ucats_med_std(season, theta)float64nan 17.45 11.85 ... 20.91 19.47
array([[ nan, 17.45286223, 11.84651848, 18.23523195, 18.32017153, 11.61553976, 23.70789109, 19.63484628, 19.29358434, 19.35648712, 26.7331515 ], [ 5.69101046, 9.93843772, 9.17102127, 10.21029571, 8.42731697, 8.15001956, 8.29972647, 8.61430674, 15.97060462, 16.37261181, 17.38674076], [13.24236784, 8.90560927, 11.90015411, 12.48898686, 10.84287492, 11.60645547, 14.68172449, 8.88609415, 18.28246684, 20.90685856, 23.609964 ], [24.46938034, 19.22347588, 29.63088173, 24.9136915 , 17.47811946, 27.91978975, 18.76557947, 20.9168366 , 22.3221237 , 20.90529963, 19.46788443]])
- ch4ucats_std(season, theta)float64nan 3.701 1.532 ... -3.105 -5.655
array([[ nan, 3.70052549, 1.53206469, 10.8658742 , 7.67210858, 1.25511454, 0.42616008, 4.3840867 , -2.54558441, 7.91959595, 0.70710678], [ 1.91774019, nan, 2.18290523, 0.751014 , 0.52709685, 1.52176039, 0.83443357, -0.04448113, -0.22086922, 1.58488182, -0.80967168], [ 0.2410132 , 2.14489057, -2.71057599, -3.39411255, 2.96984848, 0.60450891, 1.80394436, -0.69824675, -3.11126984, nan, nan], [-2.16677721, -0.98336613, nan, -9.54594155, -0.12415394, -0.11195857, 1.73965706, 3.07412071, -3.6718287 , -3.10479908, -5.65457487]])
- ch4ucats_std_std(season, theta)float64nan 7.648 3.641 ... 4.15 4.462
array([[ nan, 7.64773024, 3.64112315, 4.75020467, 6.54073773, 4.62516892, 3.04356747, 8.13175264, 0. , 1.27279221, 7.54983444], [ 1.99060292, nan, 3.60845362, 4.3487067 , 2.46328597, 2.7197794 , 4.38578432, 3.08344031, 2.43994777, 2.7878488 , 2.45992368], [ 4.14084414, 2.59764851, 1.24141496, 1.69705627, 2.68700577, 4.09709007, 6.63653811, 3.16181409, 3.67695526, nan, nan], [ 3.89765105, 13.39640787, nan, 0. , 13.28701948, 12.5933914 , 11.42853294, 10.63026391, 4.45175673, 4.14975877, 4.46197781]])
- co2(season, theta)float64-1.471 -1.512 ... 0.561 0.5395
array([[-1.47136696, -1.51222394, -1.20447095, -0.91418821, -0.5333585 , -0.25203856, 0.00359952, 0.2198754 , 0.34053158, 0.4083564 , 0.48055776], [-0.63473739, -0.57813066, -0.53942033, -0.38672611, -0.27292654, -0.12622831, 0.02043519, 0.0958563 , 0.12429696, 0.19454322, 0.24187468], [-0.34360339, -0.3003394 , -0.31271739, -0.33101659, -0.30748206, -0.16495651, 0.00787633, 0.1635608 , 0.35120649, 0.60805016, 0.43212786], [-0.2731628 , -0.29083219, -0.34366293, -0.33409356, -0.26286928, -0.20137874, -0.04109247, 0.2085595 , 0.36369748, 0.56095844, 0.53951596]])
- co2_med(season, theta)float64-1.647 -1.448 ... 0.4944 0.3504
array([[-1.64675 , -1.447875 , -1.167875 , -0.8824 , -0.549025 , -0.242 , 0.014 , 0.2305 , 0.35675 , 0.498125 , 0.61825 ], [-0.61225 , -0.54675 , -0.54475 , -0.36675 , -0.28075 , -0.11625 , 0.0359 , 0.09125 , 0.10925 , 0.19025 , 0.24825 ], [-0.32485 , -0.295575 , -0.305575 , -0.309825 , -0.29745 , -0.2018 , -0.0047125, 0.183875 , 0.358175 , 0.666 , 0.554275 ], [-0.332625 , -0.3400625, -0.35425 , -0.336625 , -0.316625 , -0.253625 , -0.015 , 0.230875 , 0.3519625, 0.494375 , 0.350375 ]])
- co2_med_std(season, theta)float640.306 0.3089 0.331 ... 0.397 0.6203
array([[0.30602159, 0.30890441, 0.3309704 , 0.36879318, 0.37161346, 0.44020322, 0.3463061 , 0.34200996, 0.38848702, 0.44946502, 0.53530451], [0.14995754, 0.20926432, 0.19779556, 0.21216829, 0.16972627, 0.17645286, 0.19077112, 0.20888202, 0.21011118, 0.23807398, 0.32791087], [0.13687815, 0.20086338, 0.22307524, 0.20180012, 0.27154507, 0.41261108, 0.32707816, 0.32522061, 0.45327849, 0.61302151, 0.52431784], [0.11552722, 0.17415417, 0.2366848 , 0.25088606, 0.22580799, 0.27044642, 0.2360875 , 0.22534947, 0.26394847, 0.3969586 , 0.62034227]])
- co2_std(season, theta)float64-0.08401 -0.03045 ... 0.1071
array([[-0.08401206, -0.03044963, -0.02038109, 0.02886679, 0.0335496 , 0.04771632, 0.04489527, 0.00228892, 0.01582133, 0.02701164, 0.00834972], [-0.0458678 , -0.04044753, -0.0334008 , -0.00822979, -0.01046549, 0.01069328, 0.01161595, -0.00075303, 0.00275062, -0.02616266, -0.0196047 ], [-0.03156798, -0.07220526, -0.0587625 , -0.04636679, -0.02462171, 0.02147456, 0.02114329, 0.03329271, 0.01632642, 0.05217462, 0.01457645], [-0.0843872 , -0.07184398, -0.07414491, -0.05063506, -0.05009888, 0.02351633, 0.01642794, 0.02027488, 0.0152247 , 0.00102808, 0.10710863]])
- co2_std_std(season, theta)float640.01431 0.05986 ... 0.08463 0.1897
array([[0.01430986, 0.05985888, 0.09299425, 0.12724067, 0.11181863, 0.18561895, 0.16468001, 0.07658752, 0.08977914, 0.09409556, 0.10649231], [0.02513893, 0.031411 , 0.03341416, 0.05215458, 0.05048584, 0.0634107 , 0.05670174, 0.0659427 , 0.07662559, 0.04765581, 0.05778798], [0.08145854, 0.04947512, 0.05372902, 0.07735519, 0.07410072, 0.09460049, 0.07377957, 0.11658506, 0.13776467, 0.11272134, 0.10167691], [0.05549567, 0.05216621, 0.03871212, 0.10095053, 0.04474618, 0.11575307, 0.08545607, 0.09080144, 0.15900903, 0.08463227, 0.1897427 ]])
- co2ao2(season, theta)float64-1.183 -1.274 ... 0.62 0.6083
array([[-1.18345001, -1.27371739, -1.05757399, -0.79257704, -0.42318044, -0.16869849, 0.09260985, 0.30559745, 0.42468778, 0.54840995, 0.61288737], [-0.72150764, -0.64809366, -0.5931327 , -0.40314757, -0.31355531, -0.16548628, 0.02143062, 0.10310853, 0.16266031, 0.19726097, 0.24133576], [-0.43239859, -0.28372511, -0.41389483, -0.43825091, -0.34193952, -0.13959466, 0.00712771, 0.13277232, 0.32687609, 0.60777906, 0.50170707], [-0.27991078, -0.38234454, -0.4346839 , -0.42908417, -0.38731442, -0.26968399, -0.06044004, 0.1616463 , 0.36547318, 0.62002433, 0.60830842]])
- co2ao2_med(season, theta)float64-1.234 -1.307 ... 0.6155 0.5264
array([[-1.2345 , -1.307 , -1.068875, -0.79925 , -0.447 , -0.226625, 0.01575 , 0.207625, 0.34725 , 0.4985 , 0.661 ], [-0.67465 , -0.6425 , -0.58195 , -0.4085 , -0.2803 , -0.1891 , 0.0747 , 0.11385 , 0.11545 , 0.194625, 0.26475 ], [-0.485 , -0.3068 , -0.4929 , -0.42025 , -0.371 , -0.367 , 0.0565 , 0.13965 , 0.272 , 0.578125, 0.5815 ], [-0.28985 , -0.3413 , -0.351 , -0.3525 , -0.3655 , -0.1897 , -0.0062 , 0.16705 , 0.446825, 0.615525, 0.52635 ]])
- co2ao2_med_std(season, theta)float640.2533 0.3608 ... 0.3686 0.5077
array([[0.25325242, 0.36081681, 0.36483646, 0.3906984 , 0.46370616, 0.47772686, 0.49246806, 0.45257051, 0.45594045, 0.54284793, 0.65303578], [0.08387981, 0.24303898, 0.28786957, 0.23943394, 0.24241598, 0.24203576, 0.2735095 , 0.26733905, 0.29998738, 0.32103709, 0.34627773], [0.21471185, 0.22817934, 0.27549185, 0.30825072, 0.40725179, 0.63211532, 0.41919966, 0.51294697, 0.61629679, 0.74624174, 0.66339506], [0.18942613, 0.23863426, 0.32926478, 0.39373711, 0.33969332, 0.35188091, 0.34472119, 0.30331402, 0.39312776, 0.36864166, 0.50767018]])
- co2ao2_std(season, theta)float640.009031 -0.0006006 ... 0.07947
array([[ 0.00903128, -0.00060062, -0.01342824, -0.0065817 , 0.00511007, 0.02465398, 0.01214311, -0.0010504 , -0.0022763 , -0.00153434, -0.00040191], [-0.01690648, 0.00973963, -0.02444648, -0.00245543, -0.01109319, 0.01909056, 0.00807968, -0.01084251, 0.00953311, -0.04128057, -0.01900571], [-0.01054883, -0.04242661, -0.01053281, 0.00088029, -0.00872957, 0.00879884, -0.01062048, 0.00511783, 0.02126968, -0.02519739, -0.01993512], [-0.02553737, -0.01162927, -0.03183791, -0.03038936, -0.01493875, 0.02835822, 0.00661757, 0.02582063, 0.01899598, 0.00096017, 0.0794696 ]])
- co2ao2_std_std(season, theta)float640.08207 0.07062 ... 0.07607 0.1477
array([[0.08207213, 0.07061787, 0.0660776 , 0.10512594, 0.10881582, 0.1177268 , 0.12176122, 0.09657016, 0.10851763, 0.10969887, 0.12101009], [0.03163443, 0.05632468, 0.05509162, 0.05712518, 0.06329034, 0.07913161, 0.06389235, 0.05843643, 0.06513052, 0.07119421, 0.0880908 ], [0.05021584, 0.11160271, 0.08421234, 0.20442645, 0.09699249, 0.09141766, 0.08877437, 0.10307072, 0.09899609, 0.11447357, 0.14277605], [0.04349831, 0.04791874, 0.05813158, 0.08202452, 0.0714951 , 0.09587311, 0.08224258, 0.09424953, 0.11571694, 0.07607126, 0.14767504]])
- co2mao2(season, theta)float64-0.2123 -0.1264 ... -0.1046 -0.1662
array([[-0.21228397, -0.12644679, -0.06195339, -0.03975744, -0.02773954, -0.00692621, -0.00682035, -0.02428644, -0.00746399, -0.05542752, -0.06353142], [ 0.13197647, 0.0949979 , 0.06054128, 0.02392093, 0.04629225, 0.03203983, 0.02504549, 0.02627397, -0.00772605, 0.01621641, 0.028444 ], [ 0.01451872, -0.08195929, 0.02362671, -0.00594079, -0.05561833, -0.05709494, -0.06848739, -0.04495154, -0.02334199, -0.07629588, -0.03551806], [-0.0326297 , 0.05772354, 0.04693579, 0.04882966, 0.07588827, 0.0253561 , -0.03434615, -0.00565312, -0.07243364, -0.10464758, -0.16624697]])
- co2mao2_med(season, theta)float64-0.2273 -0.1411 ... -0.07075 -0.169
array([[-0.22725 , -0.141125, -0.068 , -0.0465 , -0.0045 , -0.012125, 0.007 , -0.016 , -0.00525 , -0.036 , -0.05025 ], [ 0.1345 , 0.1165 , 0.033 , 0.0415 , 0.0195 , 0.0135 , 0.0025 , -0.0075 , -0.0115 , 0.02575 , 0.048 ], [ 0.0225 , -0.118 , -0.028 , -0.0395 , -0.00775 , 0.058 , -0.0475 , 0.005 , 0.0435 , -0.0665 , -0.043 ], [-0.04875 , 0.09 , 0.022 , -0.029 , 0.041 , 0.0395 , -0.011 , 0. , -0.094 , -0.07075 , -0.169 ]])
- co2mao2_med_std(season, theta)float640.1738 0.1753 ... 0.2466 0.221
array([[0.17381899, 0.17529943, 0.2241673 , 0.27508773, 0.26617268, 0.2952359 , 0.34591074, 0.34956967, 0.33774127, 0.35793768, 0.33813634], [0.10424827, 0.19600229, 0.22682625, 0.19397272, 0.20429488, 0.19290069, 0.22059192, 0.22248729, 0.20895856, 0.22023387, 0.22096103], [0.21769462, 0.21989295, 0.35204401, 0.30031899, 0.33589221, 0.37366804, 0.29982309, 0.31156591, 0.29886641, 0.29270817, 0.26731015], [0.20828396, 0.27935145, 0.27926181, 0.28215154, 0.27434197, 0.27123354, 0.24767187, 0.25977254, 0.2350918 , 0.24660301, 0.22097942]])
- co2mao2_std(season, theta)float640.03415 0.008933 ... 0.04276
array([[ 0.0341465 , 0.00893303, -0.01431414, 0.00150273, -0.00223013, 0.02312409, 0.0037955 , -0.00561236, -0.00438039, -0.0080739 , -0.00192183], [ 0.01057836, 0.02414047, -0.00744736, 0.00970511, 0.00556729, 0.02070178, 0.00609587, -0.01361812, -0.00099564, -0.03355877, -0.00926343], [ 0.00750155, -0.01797157, 0.0187893 , -0.00782275, 0.02142268, -0.00500534, 0.00600837, 0.00287976, 0.01113529, -0.00157503, -0.04445476], [-0.00505227, 0.01327314, -0.02104368, -0.03123794, -0.01346252, 0.02570554, -0.00303056, 0.00093583, -0.00252863, 0.00286219, 0.04276402]])
- co2mao2_std_std(season, theta)float640.08503 0.06633 ... 0.064 0.1005
array([[0.08503318, 0.06633016, 0.08018211, 0.1187111 , 0.09290954, 0.15690231, 0.11271077, 0.10073722, 0.10414984, 0.10353451, 0.13586717], [0.03955452, 0.04714417, 0.0465071 , 0.04836458, 0.04877734, 0.05538662, 0.06553987, 0.04671186, 0.05702186, 0.05766978, 0.08207953], [0.04679591, 0.11095138, 0.08087938, 0.1099947 , 0.08611009, 0.07948788, 0.07551321, 0.06772386, 0.07562579, 0.10252543, 0.09247802], [0.05979613, 0.05747306, 0.05709138, 0.05715181, 0.06619976, 0.07982148, 0.04983327, 0.05891857, 0.07734876, 0.06400012, 0.10053106]])
- co2mnoaa(season, theta)float64-0.0001793 -5.451e-05 ... nan nan
array([[-1.79279884e-04, -5.45100724e-05, -1.95932507e-04, -8.50716860e-05, -3.68138136e-05, -9.61359777e-06, 4.86385002e-05, -3.27862448e-06, -2.16347306e-05, 4.16580771e-05, 5.90841786e-05], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- co2mnoaa_med(season, theta)float640.0 0.0 0.0 0.0 ... nan nan nan nan
array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- co2mnoaa_med_std(season, theta)float640.00101 0.001178 ... nan nan
array([[0.00101015, 0.00117811, 0.00126169, 0.00131624, 0.001197 , 0.00126747, 0.00131897, 0.00126004, 0.00139306, 0.00130283, 0.0016048 ], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- co2mnoaa_std(season, theta)float64-0.000158 -8.696e-06 ... nan nan
array([[-1.57992180e-04, -8.69557491e-06, -1.97592320e-05, -5.76939154e-05, -6.30382877e-05, 7.58896306e-06, -1.03148084e-04, -8.37925202e-05, 6.73304616e-05, -7.35700181e-05, 5.85013562e-06], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- co2mnoaa_std_std(season, theta)float640.000457 0.0005109 ... nan nan
array([[0.00045701, 0.0005109 , 0.00052989, 0.00071998, 0.00055362, 0.0005255 , 0.00058171, 0.00060677, 0.00062303, 0.00045766, 0.00065709], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- co2moms(season, theta)float64nan 0.7296 ... -0.04649 -0.09414
array([[ nan, 0.72961524, 0.61906069, 0.50243215, 0.28124426, 0.24350855, -0.00882184, -0.32652514, -0.48503563, -0.63032655, -0.7783462 ], [-0.03229711, 0.00807399, 0.03508841, -0.00176792, -0.00784177, 0.01115202, 0.00139161, -0.00514896, -0.03125969, -0.04195769, 0.01363095], [-0.02446871, 0.02794688, 0.17317379, 0.12858634, 0.10007053, 0.06378843, 0.00651321, 0.02666826, 0.09013657, -0.01120833, 0.00731001], [ 0.25157132, 0.23380604, 0.17562265, 0.15160854, 0.06564731, -0.01202388, 0.04499748, 0.06159513, 0.02051312, -0.04648889, -0.09413889]])
- co2moms_med(season, theta)float64nan 0.729 0.6615 ... -0.098 -0.134
array([[ nan, 0.729 , 0.6615 , 0.475 , 0.222 , 0.1985 , -0.04975, -0.407 , -0.411 , -0.745 , -0.7265 ], [-0.023 , -0.0175 , 0.0415 , 0.0225 , -0.0295 , 0.005 , -0.00125, 0.0075 , 0.0025 , -0.0895 , -0.0475 ], [ 0.01075, 0.0985 , 0.0815 , 0.01775, 0.027 , 0.0905 , -0.011 , -0.0075 , 0.105 , -0.117 , -0.11625], [ 0.2255 , 0.245 , 0.17625, 0.1575 , 0.045 , -0.049 , 0.0225 , 0.0425 , -0.01 , -0.098 , -0.134 ]])
- co2moms_med_std(season, theta)float64nan 0.1761 ... 0.05923 0.06578
array([[ nan, 0.17612195, 0.19308147, 0.24759537, 0.36981355, 0.32961537, 0.45949141, 0.37393969, 0.33249491, 0.43241076, 0.30356118], [0.0995 , 0.15741903, 0.17038131, 0.16315698, 0.14857931, 0.15103729, 0.13208725, 0.13834025, 0.1085055 , 0.11056333, 0.08324162], [0.09315474, 0.16368944, 0.26245263, 0.22745465, 0.21289194, 0.19728353, 0.21945557, 0.22892378, 0.29018251, 0.32100185, 0.32236186], [0.03053968, 0.15632251, 0.15859472, 0.13674429, 0.11078441, 0.08633155, 0.10793776, 0.10915535, 0.06583039, 0.059234 , 0.0657812 ]])
- co2moms_std(season, theta)float64nan 0.03203 ... 0.05334 -0.04042
array([[ nan, 0.03202882, -0.0011105 , -0.02202262, -0.01931742, 0.1159268 , 0.09972615, -0.00665972, 0.03081109, 0.06052531, 0.05808026], [ 0.02675212, 0.01909965, 0.01780037, 0.00307046, 0.00767746, 0.00702731, 0.0039083 , -0.00442361, -0.00108369, -0.00623626, 0.00583613], [ 0.01456555, 0.00888621, 0.00807436, -0.00451316, -0.0085151 , -0.00493932, 0.00237002, 0.00286837, -0.00030506, -0.01986927, -0.02696504], [ 0.05787302, 0.00551805, -0.00168936, -0.0051786 , 0.01560247, 0.01204088, 0.01512527, -0.00318151, 0.0030221 , 0.05333664, -0.04041946]])
- co2moms_std_std(season, theta)float64nan 0.07492 ... 0.1093 0.002141
array([[ nan, 0.0749175 , 0.03016144, 0.02328988, 0.02670523, 0.44287424, 0.23155621, 0.05009504, 0.05470666, 0.0747065 , 0.05153175], [0.00210773, 0.01633902, 0.01947242, 0.01671008, 0.02464705, 0.01459768, 0.024642 , 0.02442192, 0.01500171, 0.00726492, 0.02074158], [0.0215219 , 0.0113278 , 0.01807955, 0.02007825, 0.01816673, 0.02215581, 0.02576963, 0.01832106, 0.01629496, 0.01200929, 0.01813561], [0.09252221, 0.03324764, 0.01551024, 0.01809792, 0.06272492, 0.04236391, 0.02579012, 0.01062592, 0.01871231, 0.10930178, 0.00214121]])
- co2mqcls(season, theta)float64-0.06705 0.002378 ... 0.08496
array([[-0.06704698, 0.00237836, 0.02064943, -0.0042819 , 0.00250157, -0.00792637, 0.01443524, -0.01728359, 0.01058609, 0.08456618, 0.11511558], [-0.12218873, -0.09364155, -0.11401724, -0.09572134, -0.10873383, -0.06504183, -0.04611709, -0.00128012, 0.05048342, 0.07557191, 0.07705111], [-0.14221143, -0.20964055, -0.16382896, -0.15216115, -0.11034869, -0.03849942, 0.00474947, 0.02095487, -0.00031697, 0.05781156, 0.06320317], [-0.08378688, -0.11319991, -0.14851152, -0.14809971, -0.09895042, -0.07326742, -0.02828631, -0.00087209, 0.0130941 , 0.0633588 , 0.08495647]])
- co2mqcls_med(season, theta)float64-0.05475 0.03163 ... 0.0425 0.0485
array([[-0.05475 , 0.031625, 0.04275 , -0.008625, 0.008875, 0.002 , 0.046 , -0.0215 , -0.064 , 0.084625, 0.1005 ], [-0.1085 , -0.093 , -0.0825 , -0.08025 , -0.03325 , 0. , 0. , 0. , 0.0395 , 0.08 , 0.089 ], [ 0. , -0.18775 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [-0.1025 , -0.096 , -0.1555 , -0.106 , -0.01275 , 0. , 0. , 0. , 0. , 0.0425 , 0.0485 ]])
- co2mqcls_med_std(season, theta)float640.09003 0.2093 ... 0.1221 0.1424
array([[0.09003026, 0.2093272 , 0.23812412, 0.28398795, 0.32767707, 0.2457414 , 0.30382016, 0.33446949, 0.34437245, 0.36590967, 0.39435853], [0.0853449 , 0.09898439, 0.11969286, 0.12755209, 0.18535021, 0.18712655, 0.16609124, 0.13658237, 0.11164625, 0.09473379, 0.07723508], [0.19495254, 0.22530907, 0.23702139, 0.22924269, 0.20679815, 0.16128377, 0.13158999, 0.1301538 , 0.13324791, 0.08183626, 0.08998355], [0.18067339, 0.1802072 , 0.17025764, 0.15606677, 0.15924712, 0.17985424, 0.16903133, 0.14436523, 0.11987409, 0.1220942 , 0.1423609 ]])
- co2mqcls_std(season, theta)float640.02197 0.0006001 ... 0.0007103
array([[ 0.02197347, 0.00060009, -0.00228224, 0.01394768, 0.01011828, 0.02877557, 0.01136073, 0.01924725, 0.01090867, 0.01366555, 0.01262767], [ 0.0117484 , -0.00300379, -0.0021317 , -0.00019886, -0.00289662, 0.0053867 , 0.00933186, 0.00176927, -0.0002431 , -0.00471221, -0.00395252], [ 0.02059444, 0.00511583, 0.01246853, -0.00162105, 0.00314237, 0.00425413, 0.0012852 , 0.0034436 , -0.00860813, -0.00522291, -0.01739402], [ 0.02560545, -0.00103887, 0.00867298, 0.00956778, 0.0079867 , 0.00155435, 0.00572721, 0.00337543, 0.00303396, -0.00260122, 0.00071027]])
- co2mqcls_std_std(season, theta)float640.007327 0.04345 ... 0.02939
array([[0.00732746, 0.04344716, 0.04124361, 0.08861104, 0.08298505, 0.10173363, 0.0547017 , 0.08048165, 0.07167815, 0.07455037, 0.09660858], [0.02192999, 0.00838009, 0.01137492, 0.01226118, 0.01315698, 0.02192992, 0.03109514, 0.01811281, 0.01756005, 0.01255628, 0.01302746], [0.03909396, 0.026784 , 0.02658772, 0.01529364, 0.02220364, 0.01538891, 0.02123514, 0.03184611, 0.01469795, 0.01907595, 0.01155914], [0.03847457, 0.01978977, 0.03053507, 0.03786102, 0.03756659, 0.01976526, 0.02122288, 0.01790586, 0.0212425 , 0.02512426, 0.02938743]])
- co2mspo(season, theta)float64-1.43 -1.526 ... 0.5642 0.5417
array([[-1.42990285, -1.52610926, -1.20158208, -0.90326771, -0.52923908, -0.24869162, 0.01001754, 0.22910583, 0.34941552, 0.41680873, 0.47407841], [-0.65036729, -0.58954902, -0.549559 , -0.38797396, -0.27629436, -0.12681972, 0.02264973, 0.09871939, 0.1392591 , 0.21161883, 0.25541219], [-0.33085996, -0.29003926, -0.30041233, -0.31861352, -0.29503709, -0.15301518, 0.01972799, 0.17822695, 0.38188909, 0.6431662 , 0.46649012], [-0.25590166, -0.2874381 , -0.33625887, -0.32665592, -0.25481555, -0.19441715, -0.03538755, 0.21441889, 0.3713952 , 0.56424152, 0.54165466]])
- co2mspo_med(season, theta)float64-1.39 -1.45 -1.15 ... 0.5175 0.3325
array([[-1.39 , -1.45 , -1.15 , -0.8975 , -0.6025 , -0.265 , -0.005 , 0.18 , 0.371 , 0.4675 , 0.5725 ], [-0.6225 , -0.5755 , -0.543 , -0.393 , -0.2775 , -0.1575 , 0.027 , 0.0775 , 0.1125 , 0.2125 , 0.2375 ], [-0.33225 , -0.2975 , -0.2725 , -0.2825 , -0.3225 , -0.198875, -0.013625, 0.1875 , 0.3775 , 0.68 , 0.5775 ], [-0.3025 , -0.3275 , -0.3525 , -0.3275 , -0.3025 , -0.251 , -0.01 , 0.2475 , 0.354 , 0.5175 , 0.3325 ]])
- co2mspo_med_std(season, theta)float640.3187 0.3689 ... 0.3972 0.6352
array([[0.31865903, 0.36886215, 0.40380636, 0.41308033, 0.4093618 , 0.46048126, 0.3721695 , 0.38986725, 0.43151151, 0.49533814, 0.58328628], [0.13479359, 0.20744678, 0.19667815, 0.21276529, 0.17052758, 0.18196378, 0.20941939, 0.23538432, 0.24321838, 0.28275735, 0.37596773], [0.13024762, 0.19926507, 0.22324932, 0.20676926, 0.2766986 , 0.41393485, 0.32654609, 0.32542801, 0.45694143, 0.61515713, 0.54512503], [0.11329996, 0.17750446, 0.2329604 , 0.25125955, 0.23185474, 0.27659278, 0.24123717, 0.22732208, 0.26639019, 0.39719636, 0.6351745 ]])
- co2mspo_std(season, theta)float64-0.08403 -0.03073 ... 0.1074
array([[-0.08403412, -0.03073128, -0.02053842, 0.02878428, 0.03368125, 0.0474638 , 0.04470689, 0.00223189, 0.01564008, 0.02707434, 0.00831878], [-0.04612872, -0.04047506, -0.03380707, -0.00857996, -0.01096347, 0.0106377 , 0.01130583, -0.00116326, 0.00242737, -0.02641085, -0.02016889], [-0.03114724, -0.07226711, -0.05914098, -0.04618349, -0.02476561, 0.02132039, 0.02125682, 0.033104 , 0.01613151, 0.05180902, 0.01454892], [-0.08415975, -0.07164109, -0.07377373, -0.05022281, -0.04976284, 0.02372369, 0.01679215, 0.02058337, 0.01574218, 0.00143478, 0.10736679]])
- co2mspo_std_std(season, theta)float640.01474 0.06002 ... 0.08471 0.1893
array([[0.01473579, 0.06001934, 0.09311863, 0.12730861, 0.11175968, 0.18571374, 0.1647278 , 0.07666788, 0.08981632, 0.0940358 , 0.10659528], [0.02510768, 0.031524 , 0.03334952, 0.05245666, 0.05063396, 0.06349635, 0.05676222, 0.06586678, 0.07668989, 0.04773525, 0.05782686], [0.08094753, 0.04918918, 0.0536783 , 0.07715189, 0.07388729, 0.09460834, 0.07384853, 0.11670844, 0.13822758, 0.11222437, 0.10146491], [0.05548486, 0.05209993, 0.03872203, 0.1008977 , 0.04443651, 0.11583804, 0.08536042, 0.09102687, 0.15911127, 0.0847116 , 0.18927092]])
- co2mx(season, theta)float64nan 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([[nan, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
- co2mx_med(season, theta)float64nan 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([[nan, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
- co2mx_med_std(season, theta)float64nan 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([[nan, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
- co2mx_std(season, theta)float64nan 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([[nan, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
- co2mx_std_std(season, theta)float64nan 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([[nan, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
- co2noaa(season, theta)float64-1.471 -1.536 -1.237 ... nan nan
array([[-1.47094905, -1.53640421, -1.23681366, -0.95431243, -0.56665239, -0.28714217, 0.02416682, 0.24429108, 0.37894508, 0.47586974, 0.54848681], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- co2noaa_med(season, theta)float64-1.645 -1.475 -1.185 ... nan nan
array([[-1.645 , -1.475 , -1.185 , -0.945 , -0.58 , -0.245 , 0.025 , 0.235 , 0.3425, 0.57 , 0.755 ], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- co2noaa_med_std(season, theta)float640.3071 0.3032 0.3054 ... nan nan
array([[0.30705563, 0.30319225, 0.30539333, 0.38881891, 0.34596345, 0.39593461, 0.31424052, 0.32122358, 0.36965107, 0.4765381 , 0.58578472], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- co2noaa_std(season, theta)float64-0.08277 -0.03075 ... nan nan
array([[-0.08277396, -0.03075263, -0.02536554, 0.04446271, 0.03543415, 0.03188295, 0.03139541, 0.0009636 , 0.02702197, 0.04146805, 0.02492036], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- co2noaa_std_std(season, theta)float640.01512 0.06137 0.07917 ... nan nan
array([[0.01512151, 0.06136637, 0.079169 , 0.13227371, 0.0888997 , 0.10399433, 0.09459146, 0.07363822, 0.08981721, 0.09486764, 0.11324421], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- co2oms(season, theta)float64nan -1.808 -1.493 ... 0.3148 0.22
array([[ nan, -1.80814615, -1.49297682, -1.12833613, -0.62609729, -0.39112964, -0.07915498, 0.32830937, 0.57742282, 0.77867397, 0.93511633], [-0.81818732, -0.72859251, -0.72119726, -0.44674173, -0.22963102, -0.11617371, 0.01278416, 0.1448453 , 0.24568578, 0.26609951, 0.15347222], [-0.28653855, -0.34981152, -0.47286711, -0.40197522, -0.38716851, -0.13470192, -0.08048757, 0.11893181, 0.25388426, 0.24445833, 0.06693017], [-0.34236938, -0.33569987, -0.33568899, -0.31618116, -0.15284465, -0.15388252, 0.02327554, 0.26673991, 0.33326111, 0.31477778, 0.22 ]])
- co2oms_med(season, theta)float64nan -1.83 -1.548 ... 0.43 0.305
array([[ nan, -1.83 , -1.5475 , -0.87 , -0.56 , -0.32 , -0.005 , 0.37 , 0.575 , 0.68 , 1.02 ], [-0.835 , -0.705 , -0.735 , -0.545 , -0.24 , -0.09 , 0.01125, 0.28 , 0.225 , 0.21 , 0.055 ], [-0.2625 , -0.3025 , -0.485 , -0.35 , -0.33 , -0.185 , 0. , 0.11 , 0.2425 , 0.17 , -0.17 ], [-0.34 , -0.31 , -0.32 , -0.315 , -0.11 , -0.24 , -0.015 , 0.2775 , 0.31 , 0.43 , 0.305 ]])
- co2oms_med_std(season, theta)float64nan 0.06585 ... 0.09672 0.1265
array([[ nan, 0.06584831, 0.24224161, 0.50962675, 0.36759695, 0.46900178, 0.5984815 , 0.25664632, 0.29131808, 0.29383894, 0.28291666], [0.115 , 0.12376736, 0.16898299, 0.32684315, 0.23444413, 0.14296304, 0.20620191, 0.27835274, 0.21949577, 0.17268106, 0.08956686], [0.10799949, 0.17820174, 0.18235942, 0.17446682, 0.23615408, 0.42931244, 0.29086995, 0.35962791, 0.63388093, 0.69607269, 0.73475761], [0.15652476, 0.18443608, 0.17714166, 0.2073979 , 0.18620725, 0.22260201, 0.13357489, 0.10895527, 0.14260435, 0.09672412, 0.12651306]])
- co2oms_std(season, theta)float64nan 0.0001887 ... 0.02601 0.04483
array([[ nan, 0.0001887 , -0.00585709, 0.03636968, 0.02613609, 0.0589436 , 0.10312791, 0.01232955, 0.00163667, -0.03261174, 0.03920501], [-0.05042279, -0.05487562, -0.02409263, 0.01041985, 0.01137352, 0.04064902, 0.00303822, -0.01432986, -0.01585896, -0.06080486, -0.03209114], [ 0.00906233, -0.02705711, -0.03481824, -0.04096747, -0.01822804, 0.03227719, 0.01204463, 0.03082824, 0.01593294, 0.09499128, 0.08781277], [-0.01417993, -0.01159856, -0.03672893, -0.03290186, -0.01094006, 0.03143911, 0.01871446, 0.00197501, -0.0111979 , 0.02600541, 0.04483117]])
- co2oms_std_std(season, theta)float64nan 0.03156 ... 0.1097 0.02301
array([[ nan, 0.03156036, 0.09266021, 0.08642925, 0.09091637, 0.11216792, 0.3133396 , 0.09168309, 0.07180885, 0.05325745, 0.07878581], [0.00731676, 0.02385034, 0.03136504, 0.07208179, 0.06762027, 0.06034941, 0.09396461, 0.07374918, 0.06050238, 0.01207006, 0.05934575], [0.03334015, 0.02041845, 0.01102112, 0.01955581, 0.03890177, 0.07164849, 0.04912995, 0.11216291, 0.09667742, 0.10633476, 0.09785091], [0.05477508, 0.05297312, 0.02929007, 0.02969298, 0.05669914, 0.08174493, 0.05758809, 0.05975965, 0.02365311, 0.10965906, 0.02300614]])
- co2qcls(season, theta)float64-1.322 -1.378 ... 0.5781 0.5713
array([[-1.32165217, -1.37759994, -1.12551069, -0.83648269, -0.49669198, -0.23830661, 0.03950882, 0.24158354, 0.37998567, 0.35693483, 0.37002024], [-0.52752025, -0.51227947, -0.483243 , -0.36221611, -0.20023059, -0.08281618, 0.06256915, 0.08712716, 0.03628021, 0.09627966, 0.1385869 ], [-0.20410335, -0.08536344, -0.12775631, -0.1403205 , -0.25446861, -0.12364377, 0.01991075, 0.15362112, 0.37189352, 0.67412713, 0.5397016 ], [-0.16457245, -0.170262 , -0.1900119 , -0.18349681, -0.15570408, -0.12731339, -0.0031765 , 0.17548592, 0.3212869 , 0.57812411, 0.57132728]])
- co2qcls_med(season, theta)float64-1.313 -1.424 ... 0.6137 0.4189
array([[-1.3125 , -1.424 , -1.1325 , -0.7975 , -0.54875 , -0.2775 , 0.0025 , 0.21 , 0.4476 , 0.411925, 0.475 ], [-0.527575, -0.50715 , -0.51765 , -0.374475, -0.2304 , -0.1079 , 0. , 0.0216 , 0.004075, 0.0843 , 0.1525 ], [-0.1325 , -0.020775, -0.0675 , -0.1234 , -0.292475, -0.2275 , 0. , 0.215525, 0.5125 , 0.64975 , 0.6327 ], [-0.1512 , -0.09695 , -0.133625, -0.18845 , -0.182625, -0.171725, -0.0018 , 0.17125 , 0.27185 , 0.61375 , 0.41885 ]])
- co2qcls_med_std(season, theta)float640.1126 0.2983 ... 0.4258 0.6646
array([[0.11258219, 0.29826135, 0.34784975, 0.31328368, 0.41406265, 0.46403769, 0.5714459 , 0.4296744 , 0.45960154, 0.51126464, 0.6406683 ], [0.20299971, 0.24322313, 0.21801384, 0.23065056, 0.19970096, 0.23583248, 0.28833287, 0.28266417, 0.27630854, 0.28607592, 0.35629188], [0.2159098 , 0.30609729, 0.34260139, 0.28454135, 0.31287898, 0.4548132 , 0.33105421, 0.35046347, 0.50401434, 0.70831699, 0.32535644], [0.21082476, 0.25760332, 0.2920988 , 0.25063362, 0.23366804, 0.32237868, 0.28369931, 0.2544935 , 0.3048221 , 0.42576781, 0.664632 ]])
- co2qcls_std(season, theta)float64-0.044 -0.04593 ... 0.09044
array([[-0.04399513, -0.04593285, -0.01587169, -0.00108573, 0.0152476 , 0.04816628, 0.0458756 , -0.00194831, -0.00370401, 0.01595074, 0.02079854], [-0.03297954, -0.02756914, -0.03026499, -0.00813751, -0.01044796, 0.01639873, 0.01108685, -0.00403579, -0.00878757, -0.02383191, -0.021642 ], [-0.01291119, -0.04722944, -0.03241986, -0.03541726, -0.01878994, 0.03078465, 0.01104615, 0.04349284, 0.03260837, 0.02181024, -0.02588962], [-0.03085496, -0.05279608, -0.04614688, -0.05025305, -0.02712509, 0.01279752, 0.02059946, 0.01615387, 0.03023493, -0.00049397, 0.09044414]])
- co2qcls_std_std(season, theta)float640.02705 0.06009 ... 0.08349 0.1838
array([[0.02704644, 0.06008906, 0.0745216 , 0.11918171, 0.149277 , 0.23263472, 0.23165964, 0.0874479 , 0.0905171 , 0.10725959, 0.11771044], [0.0296103 , 0.03791593, 0.03035992, 0.05531308, 0.05943319, 0.06289671, 0.05890926, 0.05342027, 0.06265219, 0.04967962, 0.05356769], [0.04234109, 0.0368398 , 0.03280487, 0.09244972, 0.06860533, 0.11685399, 0.0499487 , 0.13643599, 0.14778908, 0.09629016, 0.0490218 ], [0.05533217, 0.04008665, 0.0314459 , 0.04428207, 0.04425011, 0.07077736, 0.09089668, 0.07544293, 0.1642096 , 0.08349131, 0.18380923]])
- co2x(season, theta)float64nan -1.566 -1.199 ... 0.6031 0.5832
array([[ nan, -1.56597101, -1.19872622, -0.8537431 , -0.47677554, -0.11880768, -0.07163573, 0.28329643, 0.38111521, 0.3164077 , 0.32440623], [-0.58027044, -0.49982258, -0.48516514, -0.33702245, -0.24617926, -0.11950845, 0.02267332, 0.09611081, 0.11074964, 0.19521248, 0.24570103], [-0.39288218, -0.26850248, -0.3517686 , -0.38430721, -0.36202911, -0.25095283, 0.02669249, 0.13569658, 0.28232992, 0.58398058, 0.67767912], [-0.29339174, -0.30960931, -0.3797772 , -0.35454609, -0.27516233, -0.18372222, -0.04402208, 0.20369547, 0.37254408, 0.60306179, 0.58316412]])
- co2x_med(season, theta)float64nan -1.582 -0.941 ... 0.5379 0.3554
array([[ nan, -1.58225 , -0.940975, -0.86655 , -0.56 , -0.22095 , -0.026025, 0.27895 , 0.4279 , 0.32785 , 0.33655 ], [-0.556875, -0.521875, -0.502625, -0.330875, -0.258875, -0.114375, 0.043125, 0.067125, 0.086125, 0.21675 , 0.312125], [-0.389175, -0.295575, -0.310575, -0.313125, -0.329325, -0.291825, 0.001875, 0.188175, 0.295675, 0.715675, 0.749375], [-0.338625, -0.347625, -0.364625, -0.349375, -0.316625, -0.2369 , -0.015 , 0.2265 , 0.376 , 0.537875, 0.355375]])
- co2x_med_std(season, theta)float64nan 0.0675 0.4729 ... 0.3966 0.6387
array([[ nan, 0.0675 , 0.47289818, 0.19324532, 0.51619007, 0.65494907, 0.29093201, 0.33757434, 0.21115665, 0.22139143, 0.34800898], [0.06141466, 0.12930493, 0.14594245, 0.17124527, 0.1636268 , 0.16699478, 0.18667349, 0.19487735, 0.22302949, 0.24943981, 0.34395388], [0.0690156 , 0.13061214, 0.11032347, 0.13641955, 0.28940791, 0.40356001, 0.36697286, 0.32631915, 0.39405886, 0.46864901, 0.19560239], [0.07438304, 0.0763803 , 0.21005896, 0.25231532, 0.21154663, 0.27484284, 0.24482301, 0.24431943, 0.27444927, 0.39662049, 0.63865113]])
- co2x_std(season, theta)float64nan 0.01298 ... 0.004817 0.1127
array([[ nan, 1.29765269e-02, 2.06805292e-02, -5.05192839e-02, 4.25758139e-02, 6.45681522e-02, 5.55727765e-02, -1.40416426e-02, -2.14343530e-02, -3.42973044e-02, -6.06401146e-02], [-5.12081688e-02, -5.09949348e-02, -4.00325511e-02, -1.95435960e-02, -2.25038275e-02, 4.94917721e-03, 1.68612011e-02, 1.24589910e-03, 1.46122308e-03, -2.15915954e-02, -1.77798503e-02], [-7.02436763e-02, -8.14732763e-02, -6.94285882e-02, -7.01388941e-02, -2.50759544e-02, 3.39791731e-02, 3.08598266e-02, 2.10452085e-02, -9.11472494e-05, 4.44071722e-02, -4.28973100e-02], [-1.04600796e-01, -9.41213749e-02, -8.39115730e-02, -4.89052219e-02, -5.57409018e-02, 2.97054130e-02, 1.44607151e-02, 2.57599611e-02, 2.65066376e-02, 4.81667211e-03, 1.12713384e-01]])
- co2x_std_std(season, theta)float64nan 0.03519 ... 0.08406 0.1917
array([[ nan, 0.0351897 , 0.13987005, 0.06917666, 0.20303006, 0.0911159 , 0.124483 , 0.07679297, 0.06887829, 0.04909641, 0.04913056], [0.02072484, 0.01761598, 0.03189706, 0.04198068, 0.04223228, 0.06179609, 0.05768442, 0.06548117, 0.07589463, 0.04834881, 0.05869187], [0.08141513, 0.05873303, 0.07310199, 0.05445159, 0.08812447, 0.1286092 , 0.07955983, 0.10173146, 0.1438548 , 0.11123232, 0.05031868], [0.01053933, 0.02523724, 0.03946183, 0.11732101, 0.04569627, 0.12138303, 0.09090729, 0.0954319 , 0.16276297, 0.08406455, 0.19167219]])
- sf6(season, theta)float64nan -0.02056 ... -0.004461 -0.06098
array([[ nan, -0.02055556, -0.00933333, -0.02553333, -0.01431034, -0.00473958, -0.00139706, -0.00679012, -0.0059 , 0.00076923, -0.02041667], [-0.085 , -0.05527778, -0.05932099, -0.03735119, -0.02501282, -0.01533854, 0.0106449 , -0.00284384, 0.02113354, -0.00158571, -0.02308974], [-0.04240714, -0.01338889, -0.03303571, -0.03900641, -0.01735632, -0.01057456, 0.0015625 , 0.00320334, -0.002125 , -0.00641667, -0.03729167], [-0.05691667, -0.023175 , -0.03284314, -0.0290991 , -0.02803419, -0.01393939, -0.006375 , 0.00957955, -0.00598381, -0.00446091, -0.06098485]])
- sf6_med(season, theta)float64nan -0.03 -0.005 ... -0.01 -0.05
array([[ nan, -0.03 , -0.005 , -0.035 , -0.025 , -0.01 , 0.005 , 0.005 , -0.025 , 0.02 , -0.01 ], [-0.06 , -0.045 , -0.035 , -0.03 , -0.025 , -0.015 , 0.01 , 0.005 , 0.04 , 0.01 , -0.0175 ], [-0.03875, -0.0275 , -0.025 , -0.0275 , -0.0125 , -0.01 , 0.0125 , 0.0025 , 0.03 , -0.0275 , -0.0425 ], [-0.07 , -0.025 , -0.03 , -0.03 , -0.025 , -0.01 , -0.0125 , 0.01 , -0.005 , -0.01 , -0.05 ]])
- sf6_med_std(season, theta)float64nan 0.07522 ... 0.08252 0.1189
array([[ nan, 0.07522189, 0.05702241, 0.06508886, 0.06555761, 0.05110665, 0.05813424, 0.05640462, 0.07501893, 0.11175443, 0.08326778], [0.07706491, 0.0753372 , 0.08332593, 0.08383353, 0.07897761, 0.08300744, 0.0780612 , 0.09147674, 0.1002676 , 0.117047 , 0.11580564], [0.03420618, 0.04737088, 0.04227544, 0.03967276, 0.0467615 , 0.04060149, 0.04331257, 0.05427532, 0.0715248 , 0.07073056, 0.04837597], [0.05913108, 0.03736559, 0.04440008, 0.04543837, 0.0454682 , 0.05739615, 0.05188032, 0.04401983, 0.07167708, 0.0825199 , 0.11890092]])
- sf6_std(season, theta)float64nan -0.01634 ... 0.0177 0.04356
array([[ nan, -1.63388348e-02, 3.89936429e-02, 2.34967434e-02, 3.89223660e-03, 6.18752352e-03, -1.31049083e-06, 2.04293259e-02, 4.56903121e-03, 1.26107982e-02, 8.45489856e-05], [-1.03958987e-02, 3.50186802e-02, 2.03488064e-02, 2.37348817e-02, 1.00738031e-02, 1.09486759e-02, 6.26788362e-03, 2.75027648e-02, 4.14337611e-02, 2.20035219e-02, 5.21578805e-02], [-5.74280112e-03, 1.02107333e-02, 6.39992210e-03, -1.14916281e-02, -8.14154498e-03, -3.99038583e-03, -2.07587664e-06, 2.34619182e-03, 1.66711196e-02, 9.22987863e-03, -1.25966638e-02], [ 3.88585548e-04, 1.92094190e-03, -9.68250489e-03, 1.26937254e-03, 2.88115475e-03, 8.97881142e-03, 2.55129192e-03, 4.81045011e-03, 2.26610680e-02, 1.76954115e-02, 4.35555724e-02]])
- sf6_std_std(season, theta)float64nan 0.0276 ... 0.03067 0.04638
array([[ nan, 0.0275976 , 0.04817324, 0.03536709, 0.0314715 , 0.03404474, 0.02036726, 0.03349561, 0.02878893, 0.04282782, 0.02233078], [0.01182867, 0.05226655, 0.0618506 , 0.0573982 , 0.0541778 , 0.03176881, 0.04395199, 0.0598444 , 0.05401542, 0.03454214, 0.06910528], [0.02246412, 0.05304404, 0.05134722, 0.01985423, 0.01928176, 0.02089908, 0.02534801, 0.02642594, 0.01612007, 0.02502009, 0.02163302], [0.01525027, 0.01948939, 0.01726935, 0.03170907, 0.02080594, 0.02570982, 0.01868553, 0.02481551, 0.04675373, 0.03067416, 0.0463769 ]])
- sf6mpfp(season, theta)float64nan nan nan nan ... nan nan nan nan
array([[ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [-0.15, nan, nan, nan, nan, nan, nan, 0. , -0.09, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- sf6mpfp_med(season, theta)float64nan nan nan nan ... nan nan nan nan
array([[ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [-0.15, nan, nan, nan, nan, nan, nan, 0. , -0.09, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- sf6mpfp_med_std(season, theta)float64nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ 0., nan, nan, nan, nan, nan, nan, 0., 0., nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- sf6mpfp_std(season, theta)float64nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- sf6mpfp_std_std(season, theta)float64nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- sf6mucats(season, theta)float64nan nan nan ... 0.03756 -0.00625
array([[ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, 0.1075 , nan, 0.09375 , -0.03625 , 0.02375 , 0.043125 , 0.03875 , 0.03755952, -0.00625 ]])
- sf6mucats_med(season, theta)float64nan nan nan ... 0.065 0.0275 0.0275
array([[ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, 0.075 , nan, 0.0875, -0.0425, -0.0525, 0.045 , 0.065 , 0.0275, 0.0275]])
- sf6mucats_med_std(season, theta)float64nan nan nan ... 0.07587 0.06884
array([[ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, 0.07153452, nan, 0. , 0. , 0.15121728, 0.04616546, 0.12740192, 0.07586911, 0.06883876]])
- sf6mucats_std(season, theta)float64nan nan nan ... -0.009716 0.004831
array([[ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, -0.0386332 , nan, nan, nan, -0.01270595, 0.03960897, 0.0438626 , -0.00971578, 0.00483144]])
- sf6mucats_std_std(season, theta)float64nan nan nan ... 0.05111 0.0601
array([[ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [ nan, nan, 0.00881917, nan, nan, nan, 0. , 0.03960897, 0.07053368, 0.0511139 , 0.06010224]])
- sf6panther(season, theta)float64nan -0.02056 ... -0.004461 -0.06098
array([[ nan, -0.02055556, -0.00933333, -0.02553333, -0.01431034, -0.00473958, -0.00139706, -0.00679012, -0.0059 , 0.00076923, -0.02041667], [-0.085 , -0.05527778, -0.05932099, -0.03735119, -0.02501282, -0.01533854, 0.0106449 , -0.00284384, 0.02113354, -0.00158571, -0.02308974], [-0.04240714, -0.01338889, -0.03303571, -0.03900641, -0.01735632, -0.01057456, 0.0015625 , 0.00320334, -0.002125 , -0.00641667, -0.03729167], [-0.05691667, -0.023175 , -0.03284314, -0.0290991 , -0.02803419, -0.01393939, -0.006375 , 0.00957955, -0.00598381, -0.00446091, -0.06098485]])
- sf6panther_med(season, theta)float64nan -0.03 -0.005 ... -0.01 -0.05
array([[ nan, -0.03 , -0.005 , -0.035 , -0.025 , -0.01 , 0.005 , 0.005 , -0.025 , 0.02 , -0.01 ], [-0.06 , -0.045 , -0.035 , -0.03 , -0.025 , -0.015 , 0.01 , 0.005 , 0.04 , 0.01 , -0.0175 ], [-0.03875, -0.0275 , -0.025 , -0.0275 , -0.0125 , -0.01 , 0.0125 , 0.0025 , 0.03 , -0.0275 , -0.0425 ], [-0.07 , -0.025 , -0.03 , -0.03 , -0.025 , -0.01 , -0.0125 , 0.01 , -0.005 , -0.01 , -0.05 ]])
- sf6panther_med_std(season, theta)float64nan 0.07522 ... 0.08252 0.1189
array([[ nan, 0.07522189, 0.05702241, 0.06508886, 0.06555761, 0.05110665, 0.05813424, 0.05640462, 0.07501893, 0.11175443, 0.08326778], [0.07706491, 0.0753372 , 0.08332593, 0.08383353, 0.07897761, 0.08300744, 0.0780612 , 0.09147674, 0.1002676 , 0.117047 , 0.11580564], [0.03420618, 0.04737088, 0.04227544, 0.03967276, 0.0467615 , 0.04060149, 0.04331257, 0.05427532, 0.0715248 , 0.07073056, 0.04837597], [0.05913108, 0.03736559, 0.04440008, 0.04543837, 0.0454682 , 0.05739615, 0.05188032, 0.04401983, 0.07167708, 0.0825199 , 0.11890092]])
- sf6panther_std(season, theta)float64nan -0.01634 ... 0.0177 0.04356
array([[ nan, -1.63388348e-02, 3.89936429e-02, 2.34967434e-02, 3.89223660e-03, 6.18752352e-03, -1.31049083e-06, 2.04293259e-02, 4.56903121e-03, 1.26107982e-02, 8.45489856e-05], [-1.03958987e-02, 3.50186802e-02, 2.03488064e-02, 2.37348817e-02, 1.00738031e-02, 1.09486759e-02, 6.26788362e-03, 2.75027648e-02, 4.14337611e-02, 2.20035219e-02, 5.21578805e-02], [-5.74280112e-03, 1.02107333e-02, 6.39992210e-03, -1.14916281e-02, -8.14154498e-03, -3.99038583e-03, -2.07587664e-06, 2.34619182e-03, 1.66711196e-02, 9.22987863e-03, -1.25966638e-02], [ 3.88585548e-04, 1.92094190e-03, -9.68250489e-03, 1.26937254e-03, 2.88115475e-03, 8.97881142e-03, 2.55129192e-03, 4.81045011e-03, 2.26610680e-02, 1.76954115e-02, 4.35555724e-02]])
- sf6panther_std_std(season, theta)float64nan 0.0276 ... 0.03067 0.04638
array([[ nan, 0.0275976 , 0.04817324, 0.03536709, 0.0314715 , 0.03404474, 0.02036726, 0.03349561, 0.02878893, 0.04282782, 0.02233078], [0.01182867, 0.05226655, 0.0618506 , 0.0573982 , 0.0541778 , 0.03176881, 0.04395199, 0.0598444 , 0.05401542, 0.03454214, 0.06910528], [0.02246412, 0.05304404, 0.05134722, 0.01985423, 0.01928176, 0.02089908, 0.02534801, 0.02642594, 0.01612007, 0.02502009, 0.02163302], [0.01525027, 0.01948939, 0.01726935, 0.03170907, 0.02080594, 0.02570982, 0.01868553, 0.02481551, 0.04675373, 0.03067416, 0.0463769 ]])
- sf6pfp(season, theta)float64nan 0.015 -0.005 ... -0.025 nan
array([[ nan, 1.50000000e-02, -5.00000000e-03, 5.00000000e-03, 5.16666667e-02, 5.00000000e-03, 4.00000000e-02, -1.00000000e-02, 4.50000000e-02, 1.50000000e-02, nan], [-9.00000000e-02, -4.00000000e-02, -4.00000000e-02, -5.50000000e-02, 1.66666667e-02, -2.33333333e-02, -3.33333333e-03, 1.33333333e-02, -6.00000000e-02, -3.00000000e-02, -3.00000000e-02], [-2.75000000e-02, -2.40000000e-02, -3.20000000e-02, -3.50000000e-02, -3.50000000e-02, 3.00000000e-02, -2.08333333e-02, 3.00000000e-02, -4.00000000e-02, 8.00000000e-02, nan], [-2.50000000e-02, -2.70000000e-02, -5.00000000e-03, -5.00000000e-03, -1.50000000e-02, -4.44089210e-16, -3.50000000e-02, 1.50000000e-02, 3.50000000e-02, -2.50000000e-02, nan]])
- sf6pfp_med(season, theta)float64nan 0.015 -0.005 ... -0.025 nan
array([[ nan, 1.5000000e-02, -5.0000000e-03, 5.0000000e-03, 5.5000000e-02, 5.0000000e-03, 4.0000000e-02, -1.0000000e-02, 4.5000000e-02, 1.5000000e-02, nan], [-9.0000000e-02, -4.5000000e-02, -4.5000000e-02, -5.5000000e-02, 0.0000000e+00, -4.0000000e-02, 0.0000000e+00, 1.0000000e-02, -6.0000000e-02, -3.0000000e-02, -3.0000000e-02], [-2.0000000e-02, -2.0000000e-02, -4.0000000e-02, -3.5000000e-02, -3.5000000e-02, 3.0000000e-02, -3.0000000e-02, 3.0000000e-02, -4.0000000e-02, 8.0000000e-02, nan], [-2.5000000e-02, -3.5000000e-02, -5.0000000e-03, -5.0000000e-03, -1.5000000e-02, -4.4408921e-16, -3.5000000e-02, 2.5000000e-02, 3.5000000e-02, -2.5000000e-02, nan]])
- sf6pfp_med_std(season, theta)float64nan 0.01 0.0 0.0 ... 0.03 0.0 nan
array([[ nan, 0.01 , 0. , 0. , 0.02054805, 0.01 , 0.035 , 0.005 , 0. , 0.08 , nan], [0. , 0.03674235, 0.01224745, 0.005 , 0.04642796, 0.04642796, 0.00471405, 0.02867442, 0. , 0. , 0. ], [0.02046338, 0.01854724, 0.03544009, 0.015 , 0.005 , 0. , 0.03278719, 0.03535534, 0. , 0. , nan], [0.02 , 0.02712932, 0.06 , 0.01 , 0.03 , 0.015 , 0. , 0.03741657, 0.03 , 0. , nan]])
- sf6pfp_std(season, theta)float64nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, 0., nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- sf6pfp_std_std(season, theta)float64nan nan nan nan ... nan nan nan nan
array([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, 0., nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
- sf6ucats(season, theta)float64nan -0.03972 ... 0.05607 0.08474
array([[ nan, -0.03972222, -0.0284375 , -0.01164931, -0.0149328 , -0.00385278, 0.01566087, 0.00204301, -0.00433333, 0.03114583, -0.00854167], [-0.07611667, -0.04705882, -0.08 , -0.05958333, -0.025 , -0.01504762, -0.00436772, 0.01490714, 0.00804167, -0.01077381, -0.0266087 ], [-0.07734762, -0.11128947, -0.06577833, -0.06323718, -0.03710938, -0.01535784, 0.0039927 , 0.00056349, 0.00116667, -0.02576923, -0.0952381 ], [ nan, nan, -0.06333333, 0.0525 , 0.0275 , -0.0375 , 0.01666667, 0.02378571, 0.05833333, 0.05606667, 0.08474074]])
- sf6ucats_med(season, theta)float64nan -0.0325 -0.025 ... 0.06 0.0725
array([[ nan, -3.2500000e-02, -2.5000000e-02, -1.2500000e-02, -2.0000000e-02, -1.0000000e-02, 5.0000000e-03, 5.0000000e-03, 0.0000000e+00, 3.2500000e-02, 3.0000000e-02], [-7.5000000e-02, -4.5000000e-02, -9.5000000e-02, -7.5000000e-02, -2.5000000e-02, -2.5000000e-02, -1.5000000e-02, 4.0000000e-02, 2.5000000e-03, -5.0000000e-03, 1.5000000e-02], [-7.0000000e-02, -1.0750000e-01, -7.2500000e-02, -5.5000000e-02, -4.5000000e-02, -2.5000000e-03, -1.2500000e-02, 2.5000000e-03, -4.4408921e-16, -1.7500000e-02, -7.7500000e-02], [ nan, nan, -6.2500000e-02, 5.2500000e-02, 2.7500000e-02, -1.7500000e-02, -2.5000000e-03, 1.2500000e-02, 9.2500000e-02, 6.0000000e-02, 7.2500000e-02]])
- sf6ucats_med_std(season, theta)float64nan 0.01434 ... 0.09084 0.07649
array([[ nan, 0.01433721, 0.02146946, 0.05037877, 0.04972453, 0.03758546, 0.0475183 , 0.03852307, 0.06896537, 0.05031671, 0.11739463], [0.12806248, 0.12428759, 0.065596 , 0.08808532, 0.07410304, 0.08333532, 0.09894846, 0.08491821, 0.10364483, 0.10809812, 0.14896556], [0.07029225, 0.1068596 , 0.07167604, 0.08976795, 0.0927904 , 0.07628782, 0.08004246, 0.06962051, 0.09230926, 0.11055133, 0.14768278], [ nan, nan, 0.02420744, 0. , 0.035 , 0.03559026, 0.05036671, 0.053899 , 0.05735422, 0.09083502, 0.07648933]])
- sf6ucats_std(season, theta)float64nan -0.01442 ... -0.008535 -0.01137
array([[ nan, -1.44234539e-02, -3.09615609e-03, -7.56410268e-03, -2.07547910e-02, -1.67583717e-03, 3.92526112e-03, -3.64082584e-03, -9.25562321e-03, -1.00565696e-02, 7.03813973e-03], [ 3.13076834e-02, 4.37903114e-02, 1.84955819e-02, -1.52808527e-02, -3.05818924e-03, -1.11631586e-02, 6.75556275e-03, -4.41422818e-03, 8.65829054e-05, -9.44758325e-03, -1.07617544e-02], [ 1.09275400e-02, 7.05409207e-03, 6.08951198e-03, -2.40514790e-03, 1.13020959e-02, 6.02369086e-03, 4.13263927e-03, 1.77952131e-04, 1.37244009e-03, 7.22845296e-03, -1.10974570e-02], [ nan, nan, 4.74826332e-03, nan, nan, nan, -3.19521709e-02, 1.11344443e-02, 9.60562843e-03, -8.53513010e-03, -1.13662623e-02]])
- sf6ucats_std_std(season, theta)float64nan 0.02498 ... 0.01844 0.009239
array([[ nan, 0.02498211, 0.01655348, 0.02607374, 0.01749427, 0.0178647 , 0.02274516, 0.01831786, 0.01295438, 0.01744797, 0.03397738], [0.05247524, 0.08581564, 0.04333575, 0.04189788, 0.03018299, 0.03112838, 0.02401342, 0.03026668, 0.03221368, 0.02406953, 0.03513957], [0.02243178, 0.02271038, 0.04309443, 0.02743189, 0.05282922, 0.05356202, 0.03777535, 0.03886068, 0.0480345 , 0.0286191 , 0.00296904], [ nan, nan, 0.013554 , nan, nan, nan, 0.00353553, 0.01499387, 0.02818893, 0.01844369, 0.00923908]])
- strat(season, theta)float640.0 0.0 0.0 ... 0.147 0.2142 0.5099
array([[0. , 0. , 0. , 0. , 0.00431699, 0. , 0.00130804, 0.0193012 , 0.10282967, 0.18889494, 0.29444805], [0. , 0. , 0. , 0. , 0. , 0.01913103, 0.1213776 , 0.18716118, 0.31285982, 0.3625655 , 0.50332739], [0. , 0. , 0. , 0.00408163, 0.002331 , 0.01877505, 0.10000459, 0.05878685, 0.10380504, 0.18270034, 0.39110107], [0. , 0. , 0. , 0. , 0. , 0.01603175, 0.02808696, 0.03479455, 0.14697074, 0.21421908, 0.50985513]])
- strat_med(season, theta)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.5
array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.5], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ], [0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.5]])
- strat_med_std(season, theta)float640.0 0.0 0.0 ... 0.3796 0.4841
array([[0. , 0. , 0. , 0. , 0.08391603, 0. , 0. , 0.13425607, 0.28470105, 0.38933743, 0.45274644], [0. , 0. , 0. , 0. , 0. , 0. , 0.29736766, 0.38721767, 0.45926553, 0.46277646, 0.5 ], [0. , 0. , 0. , 0. , 0. , 0.07903095, 0.28146793, 0.16659863, 0.28177133, 0.25753938, 0.45825757], [0. , 0. , 0. , 0. , 0. , 0. , 0.14 , 0.13605854, 0.3158324 , 0.37958086, 0.48412292]])
- strat_std(season, theta)float640.0 0.0 0.0 ... 0.114 0.1769 0.1614
array([[0. , 0. , 0. , 0. , 0.00361602, 0. , 0.00291022, 0.02234985, 0.03951295, 0.04619136, 0.05456607], [0. , 0. , 0. , 0. , 0. , 0.03663044, 0.08700955, 0.09131475, 0.06099331, 0.07297801, 0.06666448], [0. , 0. , 0. , 0.01079898, 0.00793451, 0.03677006, 0.0771569 , 0.0651887 , 0.12465828, 0.20979843, 0.25431341], [0. , 0. , 0. , 0. , 0. , 0.02048583, 0.01562886, 0.04974501, 0.11396694, 0.17689147, 0.16138583]])
- strat_std_std(season, theta)float640.0 0.0 0.0 ... 0.2364 0.2356
array([[0. , 0. , 0. , 0. , 0.04232444, 0. , 0.03418729, 0.10958106, 0.12764107, 0.14074729, 0.15997615], [0. , 0. , 0. , 0. , 0. , 0.11421473, 0.17932964, 0.17838772, 0.14959917, 0.17226865, 0.16378161], [0. , 0. , 0. , 0.06296836, 0.04826373, 0.10768243, 0.1674054 , 0.15201549, 0.17763968, 0.21653514, 0.22326145], [0. , 0. , 0. , 0. , 0. , 0.10040389, 0.07800155, 0.13495867, 0.18365595, 0.236409 , 0.23563287]])
Vertical gradients: ∆θCO2¶
ac = obj_air.get_ac(**air_parms, clobber=clobber)
ac.vg_ext
co2 | gradient_mean | gradient_std | |||
---|---|---|---|---|---|
model | tracer | campaign | |||
TM5-Flux-mrf | CO2_OCN | HIPPO-1 | -0.417654 | -0.417654 | NaN |
HIPPO-2 | -0.081392 | -0.081392 | NaN | ||
HIPPO-3 | -0.383548 | -0.383548 | NaN | ||
HIPPO-5 | -0.069285 | -0.069285 | NaN | ||
ORCAS-J | -0.560490 | -0.560490 | NaN | ||
... | ... | ... | ... | ... | ... |
CAMSv20r1 | CO2_OCN | ORCAS-F | -0.711700 | -0.711700 | NaN |
ATom-1 | -0.023400 | -0.023400 | NaN | ||
ATom-2 | -1.142900 | -1.142900 | NaN | ||
ATom-3 | -0.004600 | -0.004600 | NaN | ||
ATom-4 | -0.309100 | -0.309100 | NaN |
450 rows × 3 columns
Horizontal gradients: ∆yCO2¶
data_a_clm = datasets.obs_surface_climatology('co2')
data_a_clm
<xarray.Dataset> Dimensions: (stncode: 8, month: 12) Coordinates: * month (month) int64 1 2 3 4 5 6 7 8 9 10 11 12 * stncode (stncode) object 'CRZ' 'MQA' 'DRP' 'PSA' 'SYO' 'CYA' 'MAA' 'HBA' Data variables: lat (stncode, month) float64 -46.43 -46.43 -46.43 ... -75.61 -75.61 CO2 (stncode, month) float64 -0.4859 -0.3674 ... 0.009556 -0.1172 CO2_std (month) float64 0.1112 0.1557 0.09192 ... 0.0922 0.0766 0.09829
- stncode: 8
- month: 12
- month(month)int641 2 3 4 5 6 7 8 9 10 11 12
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
- stncode(stncode)object'CRZ' 'MQA' 'DRP' ... 'MAA' 'HBA'
array(['CRZ', 'MQA', 'DRP', 'PSA', 'SYO', 'CYA', 'MAA', 'HBA'], dtype=object)
- lat(stncode, month)float64-46.43 -46.43 ... -75.61 -75.61
array([[-46.4337, -46.4337, -46.4337, -46.4337, -46.4337, -46.4337, -46.4337, -46.4337, -46.4337, -46.4337, -46.4337, -46.4337], [-54.483 , -54.483 , -54.483 , -54.483 , -54.483 , -54.483 , -54.483 , -54.483 , -54.483 , -54.483 , -54.483 , -54.483 ], [-59. , -59. , -59. , -59. , -59. , -59. , -59. , -59. , -59. , -59. , -59. , -59. ], [-64.9 , -64.9 , -64.9 , -64.9 , -64.9 , -64.9 , -64.9 , -64.9 , -64.9 , -64.9 , -64.9 , -64.9 ], [-69.0125, -69.0125, -69.0125, -69.0125, -69.0125, -69.0125, -69.0125, -69.0125, -69.0125, -69.0125, -69.0125, -69.0125], [-66.283 , -66.283 , -66.283 , -66.283 , -66.283 , -66.283 , -66.283 , -66.283 , -66.283 , -66.283 , -66.283 , -66.283 ], [-67.617 , -67.617 , -67.617 , -67.617 , -67.617 , -67.617 , -67.617 , -67.617 , -67.617 , -67.617 , -67.617 , -67.617 ], [-75.605 , -75.605 , -75.605 , -75.605 , -75.605 , -75.605 , -75.605 , -75.605 , -75.605 , -75.605 , -75.605 , -75.605 ]])
- CO2(stncode, month)float64-0.4859 -0.3674 ... -0.1172
array([[-0.48592791, -0.36740634, -0.19957368, 0.06869474, -0.03749474, 0.109195 , 0.13521 , 0.080115 , 0.00235263, -0.10074211, -0.11720588, -0.3371 ], [-0.34340909, -0.12376364, -0.00572 , 0.10627273, 0.19050909, 0.18253636, 0.214475 , 0.11918333, 0.05794167, 0.07142727, -0.015625 , -0.22355455], [-0.40568182, -0.25063077, 0.02961429, -0.03317143, 0.13013846, 0.1817 , 0.1093 , 0.06366 , 0.1576 , -0.07524615, -0.12456364, -0.33192727], [-0.41661783, -0.27819561, -0.1406 , 0.0047075 , 0.10836083, 0.13122869, 0.1365694 , 0.13315095, 0.11992821, 0.10229286, 0.01276667, -0.23140909], [-0.07956069, -0.02022656, 0.03924286, 0.12175476, 0.11723571, 0.11314048, 0.11503333, 0.10855 , 0.09761667, 0.09028631, 0.06235476, -0.02146201], [-0.10993158, -0.08767 , 0.013465 , 0.07081667, 0.02637059, 0.07675263, 0.11587368, 0.12016316, 0.0764 , 0.10892778, 0.07699474, -0.01884211], [-0.02648747, -0.04263199, -0.05482 , 0.013425 , 0.02691579, -0.01895294, 0.05019412, 0.06462105, 0.03438947, 0.07176111, 0.02256111, 0.01092 ], [-0.28997497, -0.24154251, -0.12637222, -0.04567778, -0.06282222, -0.04536667, -0.04370556, -0.03412778, -0.03298333, -0.04053889, 0.00955556, -0.11721364]])
- CO2_std(month)float640.1112 0.1557 ... 0.0766 0.09829
array([0.11118418, 0.15567353, 0.09191546, 0.08858608, 0.09495764, 0.08241664, 0.12025132, 0.09418375, 0.0835126 , 0.09219724, 0.07659701, 0.09828649])
sc = obj_srf.get_sc(clobber=clobber)
sc.df_gradients_mon
season | time_bounds | gradient | gradient_std | ||||
---|---|---|---|---|---|---|---|
model | tracer | period | month | ||||
obs | CO2 | 2000-2004 | 1 | DJF | (2000, 2004) | -0.262963 | 0.143441 |
2005-2009 | 1 | DJF | (2005, 2009) | -0.191414 | 0.074473 | ||
2010-2014 | 1 | DJF | (2010, 2014) | -0.297850 | 0.044947 | ||
2015-2019 | 1 | DJF | (2015, 2019) | -0.346297 | 0.043477 | ||
1999-2020 | 1 | DJF | (1999, 2020) | -0.254041 | 0.111184 | ||
... | ... | ... | ... | ... | ... | ... | ... |
CAMSv20r1 | CO2_OCN | 2010-2014 | 12 | DJF | (2010, 2014) | -0.162536 | 0.029921 |
2015-2019 | 12 | DJF | (2015, 2019) | -0.174630 | 0.027346 | ||
1999-2020 | 12 | DJF | (1999, 2020) | -0.171655 | 0.055785 | ||
1999-2009 | 12 | DJF | (1999, 2009) | -0.110739 | 0.055632 | ||
2009-2020 | 12 | DJF | (2009, 2020) | -0.182731 | 0.048142 |
3864 rows × 4 columns
Seasonal aircraft profiles¶
def plot_seasonal_profiles(ds_obs, ax):
theta = ds_obs.theta
seasons = ds_obs.season.values
field = 'co2'
for n, season in enumerate(seasons):
dsi = ds_obs.sel(season=season)
x, xerr = dsi[f'{field}_med'], dsi[f'{field}_med_std']
ax.errorbar(x, theta,
xerr=xerr,
marker='.',
label=season,
lw=2,
c=figure_panels.palette_colors[n],
markersize=10,
zorder=100,
)
ax.axvline(0., lw=0.5, c='k')
ax.legend(frameon=False)
ax.set_ylabel('$\\theta$ [K]')
ax.set_xlabel('$\Delta$CO$_2$ [ppm]')
xlm = ax.get_xlim()
fig, axs = util.canvas(1, 1, figsize=(4, 6))
plot_seasonal_profiles(ds_obs, axs[0, 0])
tbin = ac.theta_bins[0]
axs[0, 0].set_title(f'Aircraft obs: CO$_2$ minus ({tbin[0]:0.0f}-{tbin[1]:0.0f}K)');
util.savefig(f'seasonal-profiles-obs.pdf')

Observed gradients¶
fig, axs = util.canvas(1, 1)
figure_panels.obs_theta_gradient(ac.flight_gradients, axs[0, 0], ac.theta_bins);
util.savefig(f'seasonal-DthetaCO2-obs.pdf')

Simulated gradients¶
def vg_seasonal_cycle_model_flavors(ac, ax, co2_components=['CO2', 'CO2_OCN', 'CO2_LND', 'CO2_FFF',]):
df = ac.vg_ext
# 'CO2_LND+CO2_FFF']
doy = []
for c in campaign_info.keys():
doy.append(util.day_of_year(np.array([campaign_info[c]['time']]))[0])
data = {k: [] for k in co2_components}
error = {k: [] for k in co2_components}
for c in campaign_info.keys():
for tracer in co2_components:
data[tracer].append(
df.xs((c, tracer), level=('campaign', 'tracer')).gradient_mean.median()
)
error[tracer].append(
df.xs((c, tracer), level=('campaign', 'tracer')).gradient_mean.std(ddof=1)
)
xhat = np.linspace(-30, 365+30, 365)
for tracer in co2_components:
x, y = util.antyear_daily(np.array(doy), np.array(data[tracer]))
_, yerr = util.antyear_daily(np.array(doy), np.array(error[tracer]))
ax.errorbar(x, y, yerr=yerr,
linestyle='none',
color=figure_panels.co2_colors[tracer],
marker='.',
markersize=10,
label=figure_panels.co2_names[tracer],
)
p, pcov = ec.curve_fit(ec.harmonic, xdata=x/365.25, ydata=y, sigma=yerr, absolute_sigma=True,)
yhat = ec.harmonic(xhat/365.25, *p)
ax.plot(xhat, yhat, color=figure_panels.co2_colors[tracer], lw=2)
if tracer == 'CO2':
yhat_out = yhat
ax.axhline(0., lw=0.5, c='k')
ax.legend(loc=(1.02, 0), ncol=1, fontsize=8);
ax.set_xlim((-10, 375))
ax.set_xticks(figure_panels.bomday)
ax.set_xticklabels([f' {m}' for m in figure_panels.monlabs_ant]+['']);
ax.legend(frameon=False)
ax.set_ylabel('$\Delta_{ \\theta}$CO$_2$ [ppm]')
return yhat_out
fig, axs = util.canvas(1, 1)
co2_air = vg_seasonal_cycle_model_flavors(ac, axs[0, 0])
theta_str = figure_panels.theta_bin_def(ac.theta_bins)
axs[0, 0].set_title(f'Models: {theta_str} CO$_2$ diff')
util.savefig(f'seasonal-DthetaCO2-model.pdf')

fig, axs = util.canvas(1, 1)
co2_air = vg_seasonal_cycle_model_flavors(ac, axs[0, 0], co2_components=['CO2'])
theta_str = figure_panels.theta_bin_def(ac.theta_bins)
axs[0, 0].set_title(f'Models: {theta_str} CO$_2$ diff')
util.savefig(f'seasonal-DthetaCO2-model-total.pdf')

fig, axs = util.canvas(1, 1)
co2_air = vg_seasonal_cycle_model_flavors(ac, axs[0, 0], co2_components=['CO2', 'CO2_OCN'])
theta_str = figure_panels.theta_bin_def(ac.theta_bins)
axs[0, 0].set_title(f'Models: {theta_str} CO$_2$ diff')
util.savefig(f'seasonal-DthetaCO2-model-total-ocn.pdf')

fig, axs = util.canvas(1, 1)
co2_air = vg_seasonal_cycle_model_flavors(ac, axs[0, 0], co2_components=['CO2', 'CO2_LND', 'CO2_FFF'])
theta_str = figure_panels.theta_bin_def(ac.theta_bins)
axs[0, 0].set_title(f'Models: {theta_str} CO$_2$ diff')
util.savefig(f'seasonal-DthetaCO2-model-total-lnd-fff.pdf')

Observed gradients¶
fig, axs = util.canvas(1, 1)
figure_panels.obs_srf_seasonal(axs[0, 0], data_a_clm)
util.savefig(f'seasonal-DyCO2-obs.pdf')

def hg_seasonal_cycle_model_flavors(sc, ax, period='1999-2020',
co2_components=['CO2', 'CO2_OCN', 'CO2_LND', 'CO2_FFF',]):
df = sc.df_gradients_mon
# 'CO2_LND+CO2_FFF']
doy = util.doy_midmonth()
data = {k: [] for k in co2_components}
error = {k: [] for k in co2_components}
for month in range(1, 13):
for tracer in co2_components:
gradient = df.xs((period, month, tracer), level=('period', 'month', 'tracer')).gradient
data[tracer].append(gradient.median())
error[tracer].append(gradient.std(ddof=1))
xhat = np.linspace(-30, 365+30, 365)
for tracer in co2_components:
x, y = util.antyear_daily(np.array(doy), np.array(data[tracer]))
_, yerr = util.antyear_daily(np.array(doy), np.array(error[tracer]))
ax.errorbar(x, y, yerr=yerr,
linestyle='none',
color=figure_panels.co2_colors[tracer],
marker='.',
markersize=10,
label=figure_panels.co2_names[tracer],
)
p, pcov = ec.curve_fit(ec.harmonic, xdata=x/365.25, ydata=y, sigma=yerr, absolute_sigma=True,)
yhat = ec.harmonic(xhat/365.25, *p)
ax.plot(xhat, yhat, color=figure_panels.co2_colors[tracer], lw=2)
if tracer == 'CO2':
yhat_out = yhat
ax.axhline(0., lw=0.5, c='k')
ax.legend(loc=(1.02, 0), ncol=1, fontsize=8);
ax.set_xlim((-10, 375))
ax.set_xticks(figure_panels.bomday)
ax.set_xticklabels([f' {m}' for m in figure_panels.monlabs_ant]+['']);
ax.legend(frameon=False, loc="lower left")
ax.set_ylabel('$\Delta_{ y}$CO$_2$ [ppm]')
return yhat_out
fig, axs = util.canvas(1, 1)
co2_srf = hg_seasonal_cycle_model_flavors(sc, axs[0, 0])
axs[0, 0].set_title(f'Models: SO CO$_2$ minus SPO')
util.savefig(f'seasonal-DyCO2-model.pdf')

fig, axs = util.canvas(1, 1)
co2_srf = hg_seasonal_cycle_model_flavors(sc, axs[0, 0], co2_components=['CO2'])
axs[0, 0].set_title(f'Models: SO CO$_2$ minus SPO')
util.savefig(f'seasonal-DyCO2-model-total.pdf')

fig, axs = util.canvas(1, 1)
co2_srf = hg_seasonal_cycle_model_flavors(sc, axs[0, 0], co2_components=['CO2', 'CO2_LND', 'CO2_FFF'])
axs[0, 0].set_title(f'Models: SO CO$_2$ minus SPO')
util.savefig(f'seasonal-DyCO2-model-total-lnd-fff.pdf')

fig, axs = util.canvas(1, 1)
co2_srf = hg_seasonal_cycle_model_flavors(sc, axs[0, 0], co2_components=['CO2', 'CO2_OCN'])
axs[0, 0].set_title(f'Models: SO CO$_2$ minus SPO')
util.savefig(f'seasonal-DyCO2-model-total-ocn.pdf')

How much bigger is the vertical gradient?
(co2_air.max() - co2_air.min())/(co2_srf.max() - co2_srf.min())
3.451083991601859
Fig 2: Seasonal evolution atmospheric CO2 gradients¶
fig = plt.figure(figsize=(14, 6)) #dpi=300)
# set up plot grid
gs = gridspec.GridSpec(
nrows=2, ncols=2,
left=0.38, right=1,
bottom=0., top=1,
hspace=0.25, wspace=0.24,
)
nrow = 2
ncol = 2
axs = np.empty((nrow, ncol)).astype(object)
for i, j in product(range(nrow), range(ncol)):
axs[i, j] = plt.subplot(gs[i, j])
ax_p = fig.add_axes([0.075, 0.08, 0.23, 0.82])
plot_seasonal_profiles(ds_obs, ax_p)
tbin = ac.theta_bins[0]
ax_p.set_title(f'Aircraft obs: CO$_2$ minus ({tbin[0]:0.0f}-{tbin[1]:0.0f}K)')
figure_panels.obs_theta_gradient(ac.flight_gradients, axs[0, 0], ac.theta_bins);
ylm = axs[0, 0].get_ylim()
theta_str = figure_panels.theta_bin_def(ac.theta_bins)
vg_seasonal_cycle_model_flavors(ac, axs[1, 0])
axs[1, 0].set_title(f'Models: {theta_str} CO$_2$ diff')
figure_panels.obs_srf_seasonal(axs[0, 1], data_a_clm)
hg_seasonal_cycle_model_flavors(sc, axs[1, 1])
axs[1, 1].set_title(f'Models: SO CO$_2$ minus SPO')
util.label_plots(fig, [ax_p]+[ax for ax in axs.ravel()], xoff=-0.02)
util.savefig(f'metrics-seasonal-cycle.pdf')

Seasonal evolution of atmospheric CO2 over the Southern Ocean. (A) Vertical profiles of CO2 observations collected by aircraft south of 45°S, binned on 5 K potential temperature (θ) bins and averaged by season (whiskers show standard deviation). (B) The vertical gradient (\(\Delta_{\theta}\ce{CO}_2\)) in CO2 measured from aircraft south of 45°S. Small points show \(\Delta_{\theta}\ce{CO}_2\) for individual profiles; larger points show the median and standard deviation (whiskers) for each flight. The black line shows a two-harmonic fit to the flight-median points. (C) Monthly climatology (1999–2019) of the latitudinal gradient in CO2 measured by surface stations (Fig 1); the black line shows the station mean metric (\(\Delta_{y}\ce{CO}_2\)). Separate laboratory records at SYO and PSA have been averaged. The seasonal evolution of (D) \(\Delta_{\theta}\ce{CO}_2\) and (E) \(\Delta_{y}\ce{CO}_2\) simulated in a collection of atmospheric inverse models. The points show the median across the models, whiskers show the standard deviation; the colors correspond to the “total” CO2 (black), and CO2 tracers responsive to only ocean (blue), land (green), and fossil (red) surface fluxes. Note that the y-axis bounds differ by panel.