Base Conda Environments#
cisl-cloud-base#
The NCAR JupyterHub has a custom conda environment, cisl-cloud-base, as the default base environment. This environment has been put together based on input from users, referencing other production Jupyter images, and requirements that were set to deliver to users.
Note
This is just a default environment that provides common packages to try and enable users to get started quickly. Custom environments are supported and documentation on how to implement them can be found here
List of Packages used#
An up to date list of packages and versions can be found directly at this link to the file in GitHub
cisl-cloud-base package list
argopy=0.1.14
arm_pyart=1.15.0=py310h1fa729e_0
astropy=5.3.1=py310h278f3c1_0
beautifulsoup4=4.12.2=pyha770c72_0
bokeh=3.1.1=pyhd8ed1ab_0
boto3=1.28.2=pyhd8ed1ab_0
bottleneck=1.3.7=py310h0a54255_0
ca-certificates=2023.7.22=hbcca054_0
cartopy=0.22.0=py310hcc13569_1
cdsapi=0.6.1=pyhd8ed1ab_0
celluloid=0.2.0=pyhd8ed1ab_0
certifi=2023.7.22=pyhd8ed1ab_0
cf-units=3.2.0=py310h278f3c1_0
cfgrib=0.9.10.4=pyhd8ed1ab_0
click=8.1.4=unix_pyh707e725_0
cmocean=3.0.3=pyhd8ed1ab_0
dask=2023.7.0=pyhd8ed1ab_0
dask-gateway=2023.1.1=pyh8af1aa0_0
dask-jobqueue=0.8.2=pyhd8ed1ab_0
dask-ml=2023.3.24=pyhd8ed1ab_1
datashader=0.15.1=pyhd8ed1ab_0
descartes=1.1.0=py_4
docopt=0.6.2=py_1
erddapy=2.2.0=pyhd8ed1ab_0
esmpy=8.4.2=pyhc1e730c_1
fiona=1.9.4=py310h111440e_0
flox=0.7.2=pyhd8ed1ab_0
folium=0.14.0=pyhd8ed1ab_0
gdal=3.7.3=py310h5c4b078_5
geocat-comp=2023.06.1=pyha770c72_0
geocat-viz=2023.07.0=pyhd8ed1ab_0
geocube=0.4.2=pyhd8ed1ab_1
geopandas=0.14.1
geopy=2.4.0
geoviews=1.10.0=pyhd8ed1ab_0
ghp-import=2.1.0=pyhd8ed1ab_0
globus-cli=3.15.0=pyhd8ed1ab_0
globus-sdk=3.21.0=pyhd8ed1ab_0
gsw=3.6.17=py310h278f3c1_0
h5netcdf=1.2.0=pyhd8ed1ab_0
h5py=3.10.0=nompi_py310ha2ad45a_100
holoviews=1.18.1=pyhd8ed1ab_0
hvplot=0.8.4=pyhd8ed1ab_1
intake=0.7.0=pyhd8ed1ab_0
intake-esm=2023.7.7=pyhd8ed1ab_0
intake-thredds=2022.8.19=pyhd8ed1ab_0
intake-xarray=0.7.0=pyhd8ed1ab_0
ipympl=0.9.3=pyhd8ed1ab_0
ipykernel=6.24.0=pyh71e2992_0
ipywidgets-bokeh=1.5.0
iris=3.6.1=pyha770c72_0
jupyter_bokeh=3.0.7
jupyter-book=0.15.1=pyhd8ed1ab_0
jupyter-panel-proxy=0.1.0
ldcpy=0.17=py310h5764c6d_1
libblas=3.9.0=17_linux64_blis
matplotlib=3.7.2=py310hff52083_0
metpy=1.5.1=pyhd8ed1ab_0
mpi4py=3.1.4=py310h37cc914_0
nbstripout=0.6.1=pyhd8ed1ab_0
nc-time-axis=1.4.1=pyhd8ed1ab_0
netcdf4=1.6.4=nompi_py310hba70d50_103
numba=0.57.1=py310h0f6aa51_0
numcodecs=0.11.0=py310heca2aa9_1
numexpr=2.8.4=py310h690d005_100
numpy=1.24.4=py310ha4c1d20_0
ocgis=2.1.1=py_1
pandas=2.0.3=py310h7cbd5c2_1
panel=1.2.3=pyhd8ed1ab_0
papermill=2.3.4=pyhd8ed1ab_0
pillow=10.0.1=py310h01dd4db_2
pop-tools=2023.6.0=pyhd8ed1ab_0
pyarrow=14.0.1=py310hf9e7431_1_cpu
pydap=3.4.0=pyhd8ed1ab_0
pygraphviz=1.11=py310h91ff30a_0
pygrib=2.1.4=py310hdcc264a_7
pyhdf=0.11.3=py310h3532cbf_0
pylint=2.17.4=pyhd8ed1ab_0
pynco=1.1.0=pyhd8ed1ab_1
pyspharm=1.0.9=py310h19f2f35_1008
pystac=1.9.0=pyhd8ed1ab_0
pystac-client=0.7.5=pyhd8ed1ab_0
pytables=3.9.1=py310h374b01c_0
pyqt=5.15.7=py310hab646b1_3
python=3.10.12=hd12c33a_0_cpython
python-graphviz=0.20.1=pyh22cad53_0
python-wget=3.2=py_0
rasterio=1.3.9=py310h6a913dc_0
rechunker=0.5.2=pyhd8ed1ab_1
rio-cogeo=5.0.0=pyhd8ed1ab_0
rioxarray=0.15.0=pyhd8ed1ab_0
satpy=0.44.0=pyhd8ed1ab_0
scikit-image=0.21.0=py310hc6cd4ac_0
scikit-learn=1.3.0=py310hf7d194e_0
scipy=1.11.1=py310ha4c1d20_0
seaborn=0.12.2=hd8ed1ab_0
seawater=3.3.4=py_1
shapely=2.0.2=py310h7dcad9a_0
siphon=0.9=pyhd8ed1ab_2
statsmodels=0.14.0=py310h278f3c1_1
tobac=1.4.2=pyhd8ed1ab_0
widgetsnbextension=4.0.8=pyhd8ed1ab_0
windspharm=1.7.0=py310hff52083_1004
wrf-python=1.3.4.1=py310h3254323_3
xarray=2023.6.0=pyhd8ed1ab_0
xesmf=0.7.1=pyhd8ed1ab_0
xgcm=0.8.1=pyhd8ed1ab_0
xrft=1.0.1=pyhd8ed1ab_0
zarr=2.15.0=pyhd8ed1ab_0
NPL#
We also include the NCAR Python Library (NPL) conda environment and Python Kernel to users. This is a copy of the packages utilized for NPL that is hosted on HPC. We did have to upgrade a few specific versions to address vulnerabilities. For the most part versions will match what is used on HPC JupyterHub.
List of Packages used#
An up to date list of packages and versions can be found directly at this link to the file in GitHub
npl-2023b package list
arm_pyart=1.15.0=py310h1fa729e_0
astropy=5.3.1=py310h278f3c1_0
bokeh=3.1.1=pyhd8ed1ab_0
boto3=1.28.2=pyhd8ed1ab_0
bottleneck=1.3.7=py310h0a54255_0
ca-certificates=2023.7.22=hbcca054_0
cartopy=0.22.0=py310hcc13569_1
cdsapi=0.6.1=pyhd8ed1ab_0
celluloid=0.2.0=pyhd8ed1ab_0
certifi=2023.7.22=pyhd8ed1ab_0
cf-units=3.2.0=py310h278f3c1_0
cfgrib=0.9.10.4=pyhd8ed1ab_0
click=8.1.4=unix_pyh707e725_0
cmocean=3.0.3=pyhd8ed1ab_0
dask-jobqueue=0.8.2=pyhd8ed1ab_0
dask-labextension=6.1.0=pyhd8ed1ab_0
dask-mpi=2022.4.0=pyh458ca06_2
dask=2023.7.0=pyhd8ed1ab_0
datashader=0.15.1=pyhd8ed1ab_0
descartes=1.1.0=py_4
docopt=0.6.2=py_1
eccodes=2.32.1=h35c6de3_0
esmpy=8.4.2=pyhc1e730c_1
fiona=1.9.4=py310h111440e_0
flox=0.7.2=pyhd8ed1ab_0
folium=0.14.0=pyhd8ed1ab_0
gdal=3.7.3=py310h5c4b078_5
geocat-comp=2023.06.1=pyha770c72_0
geocat-viz=2023.07.0=pyhd8ed1ab_0
geoviews=1.10.0=pyhd8ed1ab_0
ghp-import=2.1.0=pyhd8ed1ab_0
globus-cli=3.15.0=pyhd8ed1ab_0
gsw=3.6.17=py310h278f3c1_0
h5netcdf=1.2.0=pyhd8ed1ab_0
h5py=3.10.0=nompi_py310ha2ad45a_100
hvplot=0.8.4=pyhd8ed1ab_1
intake-esm=2023.7.7=pyhd8ed1ab_0
intake-xarray=0.7.0=pyhd8ed1ab_0
intake=0.7.0=pyhd8ed1ab_0
ipykernel=6.24.0=pyh71e2992_0
ipympl=0.9.3=pyhd8ed1ab_0
ipywidgets=8.0.7=pyhd8ed1ab_0
iris=3.6.1=pyha770c72_0
jupyter-book=0.15.1=pyhd8ed1ab_0
jupyter-server-proxy=4.0.0=pyhd8ed1ab_0
jupyterlab=4.0.2=pyhd8ed1ab_0
ldcpy=0.17=py310h5764c6d_1
libblas=3.9.0=17_linux64_blis
matplotlib=3.7.2=py310hff52083_0
mpi4py=3.1.4=py310h37cc914_0
nc-time-axis=1.4.1=pyhd8ed1ab_0
ncar-jobqueue=2021.4.14=pyh44b312d_0
netcdf4=1.6.4=nompi_py310hba70d50_103
numba=0.57.1=py310h0f6aa51_0
numcodecs=0.11.0=py310heca2aa9_1
numexpr=2.8.4=py310h690d005_100
numpy=1.24.4=py310ha4c1d20_0
ocgis=2.1.1=py_1
openssl=3.1.4=hd590300_0
pandas=2.0.3=py310h7cbd5c2_1
papermill=2.3.4=pyhd8ed1ab_0
pillow=10.0.1=py310h01dd4db_2
pop-tools=2023.6.0=pyhd8ed1ab_0
pyarrow=14.0.1=py310hf9e7431_1_cpu
pydap=3.4.0=pyhd8ed1ab_0
pygraphviz=1.11=py310h91ff30a_0
pygrib=2.1.4=py310hdcc264a_7
pyhdf=0.11.3=py310h3532cbf_0
pylint=2.17.4=pyhd8ed1ab_0
pynco=1.1.0=pyhd8ed1ab_1
pyqt=5.15.7=py310hab646b1_3
pyspharm=1.0.9=py310h19f2f35_1008
pytables=3.9.1=py310h374b01c_0
python-graphviz=0.20.1=pyh22cad53_0
python-wget=3.2=py_0
python=3.10.12=hd12c33a_0_cpython
scikit-image=0.21.0=py310hc6cd4ac_0
scikit-learn=1.3.0=py310hf7d194e_0
scipy=1.11.1=py310ha4c1d20_0
seaborn=0.12.2=hd8ed1ab_0
seawater=3.3.4=py_1
shapely=2.0.2=py310h7dcad9a_0
statsmodels=0.14.0=py310h278f3c1_1
tobac=1.4.2=pyhd8ed1ab_0
widgetsnbextension=4.0.8=pyhd8ed1ab_0
windspharm=1.7.0=py310hff52083_1004
wrf-python=1.3.4.1=py310h3254323_3
xarray=2023.6.0=pyhd8ed1ab_0
xesmf=0.7.1=pyhd8ed1ab_0
xgcm=0.8.1=pyhd8ed1ab_0
xrft=1.0.1=pyhd8ed1ab_0
zarr=2.15.0=pyhd8ed1ab_0
r-4.3#
We provide a base R environment with a packages installed based off what is provided to users on HPC JupyterHub.
List of Packages used#
An up to date list of packages and versions can be found directly at this link to the file in GitHub
r-4.3 package list
r=4.3=r43hd8ed1ab_1007
r-irkernel=1.3.2=r43h785f33e_1
ca-certificates=2023.7.22=hbcca054_0
openssl=3.1.4=hd590300_0
r-terra=1.7_55=r43h25a7ac2_0
r-rgdal=1.6_7=r43haac4566_0
r-rnetcdf=2.6_2=r43h3183d2a_4
r-ggplot2=3.4.4=r43hc72bb7e_0
r-lubridate=1.9.3=r43h57805ef_0
r-randomforest=4.7_1.1=r43h61816a4_2
r-rgooglemaps=1.5.1=r43hc72bb7e_0
r-lava=1.7.3=r43hc72bb7e_0
r-beanplot=1.3.1=r43ha770c72_2
r-cdft=1.2=r43hc72bb7e_2
r-corrplot=0.92=r43hc72bb7e_2
r-dt=0.28=r43hc72bb7e_1
r-ellipse=0.5.0=r43hc72bb7e_0
r-energy=1.7_11=r43ha503ecb_1
r-fields=15.2=r43h61816a4_0
r-fitdistrplus=1.1_11=r43hc72bb7e_1
r-moments=0.14.1=r43hc72bb7e_2
r-pcict=0.5_4.4=r43h57805ef_1
r-proj=0.4.0=r43h57805ef_2
r-prroc=1.3.1=r43hc72bb7e_1005
r-pscl=1.5.5.1=r43hd590300_1
r-qgraph=1.9.8=r43ha503ecb_0
r-quantreg=5.97=r43hd9ac46e_0
r-roxygen2=7.2.3=r43ha503ecb_1
r-udunits2=0.13.2.1=r43h57805ef_3
r-zoo=1.8_12=r43h57805ef_1
r-clipr=0.8.0=r43hc72bb7e_2
r-readr=2.1.4=r43ha503ecb_1
r-curl=5.1.0=r43hf9611b0_0
r-lmoments=1.3_1=r43h7ce84a7_5
r-statmod=1.5.0=r43hd8f1df9_1
r-zip=2.3.0=r43h57805ef_1
r-distillery=1.2_1=r43h785f33e_2
r-nloptr=2.0.3=r43hcf54a89_2
r-extremes=2.1_3=r43h1df0287_1
r-climate4r.climdex=0.2.3=r43ha770c72_0
r-climate4r.datasets=0.0.1=r43ha770c72_2
r-climate4r.indices=0.3.1=r43ha770c72_0
r-s2dv=2.0.0=r43hc72bb7e_0
jupyter_client=8.6.0=pyhd8ed1ab_0
r-dataretrieval=2.7.14=r43h785f33e_0